AD A Q

BT FILE ropy

AFWAL-TR-80-3101

T LRER

MULTI-RATE DIGITAL CONTROL SYSTEMS WITH

SIMULATION APPLICATIONS
Volume |: Technical Report

RICHARD F. WHITBECA

SYSTEMS TECHNOLOGY, INC.
HAWTHORNE, CA 90250

DENNIS G. J. DIDALEUSKY
FLIGHT DYNAMICS LARORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433

SEPTEMBER 1980

TECHNICAL REPORT AFWAL-TR-80-3101 VOL I
Final Report — January 1979-May 1880

Approved for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AlR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433

81 4

M A i B L LR FUNRE TR KUY

:
‘
N
!
4
!




NOTICE

wWhein Government drawings, specifications, or other data ¢-e used for any purpose
cther than in connection with a definitely related Government procurement operation,
the Urnited States Government thereby incurs no responsibility ner any obligation
whatsoever; and the fact that the government may have formulated. furnished, or in
any way supplied the sald drarrings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any

; other person or corparation, nr conveying any rights or permission te manufacture
use, or sall any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NIIS, it will
le available to the general puklic, including foreign natious.

This technical report has been reviewed and is approved for publication.

el B Lo Byolpuaur

DENNIS G. J. DIDALEUSKY, Captain, USAF R. 0. ANDERSON, Chief
Project Engineer Control Dynamics branch
Control Dynamics Branch Flight Control Division

Flight Control Division

: FOR 4;9 COMMANDER

Séh_ézﬁ%@“ —
ROBERT C. ETTINGER, Colaflel, USAF

Chief, Flight Control Division

"If your address has changed, if you wish to be removed from our mailing list, or

if the addressee is no lecnger employed by your organization please notify AFWAL/FIGC,
W-PAFB, OH 45423 to help us maintain a current mailing list”.

Copies of this report should not be returned unless return is regquired by security i
considerations, coatractual cobligations, or notice on a specific document.

AIR FORCE/56780/27 March 1331 — 510

g




U

A WITHI EINULATIONAAIPLTCATIONS, \,/’ 29 Jan 79 - 29 May ’{ z |

| Systems Technology, Inc. A |Program Element 61102F,
i] 13766 South Hawthorne Boulevard /é ,rPrnjec Mathematics,
/| Bawthorne, California 90250 TN - |T a

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE /When Dare Entered)

- READ INSTRUCTIONS
BEFORE COMPLETING FORM

(/) REPORT DOCUMENTATION PAGE

Y]

A'z GOVT ACCESSION NO| 3. RECIFIENT'S CATALOG NUMBER
r

ATWALETR-8-3191 . VoL 1]~ ;41)7’75y5

[ LN O G VTRV 7 7 e 100 COVERED

| MULTI-RATE PIGITAL GONTROL SYSTEMS ,‘? Final Hep@rr, —

. Volume I. Technical Report,

- o B D LR EQ RMLY G ok
- [t ~ TR-1142-14
y T O v

Q}“{ F33615-79-C-36f1 [ 4ol

7. ALY . TR T XN T NUMBER(Y)
R. F./Whitbeck \ -

.J;,—Al.jmdaleusky

9. PER7FORMING OHGANIZATION MAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

ask N7, th. of Flt. Control

Flight Dynamics Laboratory
Air Force Wright Aeronautical Laboratories
Qiy rorce Systems Commarnd

‘ 3 _'_ﬂhj a 45433 j
4. MONITORING AGENCY NAME & ADDRESS(If differant fram Controlling Otheed

11. CONTROLLING OFFICE NAME AND ADDRFSS q:// /1/ Z

n

Unclassified

154, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTR'SUTION STATEMENT (of this Report,

Approved for public release; distribution unlimited.

: ‘-7' DISTRIBUTION STATEMENT (of the abatract entsred In Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

15, KEY WORDS {Continue on reveran aide if necessary and Identify by block number)

Digital Control Systems Frequency Response Computational Delays Servo Apaly-
Sampled Data Switch Decomposition Tusiin Transform sis
z-Transfoims Closed-Locp Systems Simulation Error Closed-Loop
w=Domain Linear Systems Analysis Analysis
Multi-Rate Samplipg Root Locus

20 ABSTRACT (Continue orieverse aide If neceesary und Identily by black number)

Many current dikital design procedures attempt only to approach the charac-
teristics of existind aznalog designs. No explicit methodology exists which can
exploit the unique cha%gqteristics of multi-rate or multiple-order digital com-
putation and filtering. 'he objective of this research effort is to develop a
nmulti-rate/multipie~order theory for the design of closed-loop digital control

systems with characteristics and attributes that are either difficult or impos-
sible to attain with analog or single-rate controllers. ThLe key idea in this

(continued) N

FORM .
DD , Jan 73 1473 EDITION 0F 1 NOV 65 15 OBSOLETE Unclassified

A SECUR.TY CLASSIFICATION OF THIS PAGE (When Data Entered)

DY V5
2

f

U N LI




[, - e e et s = ———— memma s s n cgm e eceh o e
mpn e A e ¢ — i & ¢ Ay g & 5 -

Unclassified
SECURITY CLASSIFICATION OF THIS PaGErBhern: leta Frntored) v

kzo. ABSTRACT (Continued)

~methodology is to use the logic of the computer to take a scalar continuous out-

put signal, sample it at relatively high rate, and then sort out the various

samples into a vector of ”pseudo measurements. The petential of such a scheme
is significant, since it offers, among other things, the possibility of using
fewer sensors and the potential for providing gracefully degrading system par-
formance in the face of sensor failare. :

. I —
The pseudo measurement coucept may be likened to the observer concept of

‘[ linear system theory. An ''observer" is a dynamic subsystem which processes the

( available measurements and control Inputs to obtain asymptotic estimates of

; | those states which are not measured. The distinction between the observer and

i pseudo measurement concept is as follows, Additional pseudo states required for

! proper control action are obtained via design of a multi-rate or multiple-order

| sampling sequence in the pseudo measi.ement approach, while the estimate of

‘ syvstem states not measured 1s attained by design of a dynamic subsystem in the

| observer approach. The pseudo measurement concept is based on using information

! contained in a scalar measurement, sawpled at a high rate, to generate a lower

\ rate measurement vector, This vector is likened to pseudo states since it
effectively provides distinctiveiy c¢:ifferent information in the form of separate

\ g)ling sequences shifted in time.

—="The report is organized in three volumes. Volume I contains the theoretical
developments as well as illustrative examples and case studies. The basic tools
needed to assess the pseudo measurci:ent concept are reviewed and extended. The
concept of the frequency response of the continucus variables of single-rate
digitally controlled system is theu given sufficient generality to treat multi-
rate systems (including the pseudc measurement concept). A YF-16 case study is
used tc compare pseudo measurement gains against conventional YF-16 analog con-
troller gains. The pseudo mearure sent gains are found to be comparable with the
conventional gains, indicating tue¢ approach does not require control authority
more excessive than an analcg conrroller design. —

As a "byproduct,' an ‘mjortaut relationshiﬁ/:g\deduced which made ir feasiblqg
1 to apply the switch dezompositicn/frequency response technique to the error
analysis of simulations of continuous systems and/or discretely controlled con-
tinuous systems. An illustrative example demonstrates the significant spectral
differences between a closed-loop system (employing an analog or digital con~
troller) and an aii-digital simulation of the closed~lcop system. The example
also treats problems encountered when simulation software is implemented on two
different computers, each working in a slightly different frame time (the so-
called independent processor problem). This provides a tool which can be profitH
ably applied to the "error" analysis of simulations; perhaps to predict expected
differences between actual flight test and man-in-the-loop moving-base simula-
tions.

Volume II describes two algorithms useful in the analysis of multi-rate
systems, while Volume III gives FORTRAN listings for these algorithms. The
first algorithm converts a continuous transfer function in the s-domain into
alternate descriptions in the z-, w-, and w'--domains. The second algorithm
calculates 3 low data rate discrete transform given a high data rate discrete
transfer function. This algorithm is presented in Section LV of Volume 1 and
later derived in Section IV of Volume II,
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SECTION I

INTRODUCT ION

Many current digital design procedures attempt only to approach the
characteristics of existing analog designs. No explicit methodology
exists which can explolt the unique characteristics of multi-rate or
inultiple-order digital computation and filtering. The objective of this
research effort Is to develop a multi-rate/multiple-order theory for the
design of closed-loop digital control systems with characteristics and
attributes that are either difficult or impossible to attain with analcg
or single-rate controllers. The key idea in this methodology is to use
the loglc of the computer to take a scalar continuous output signal,
sample it at a relatively high rate, and then sort out the various sam-

ples into a vector of 'pseudo measuremeats. The potential of such a

scheme is significant, since it offers, among other things, the possi-

bility of using fewer senscrs and the potential for providing gracetully

degrading system performance in the face of sensor failure.

The pseudo measurement concept may be 1likened to the observer con-
cept of linear system theory. Recall that an ''observer" is a dynamic
subsystem which processes the available measurements and contrel inputs
to obtain asymptotic estimates of those states which are not measured.
The distinction between the observer and pseudo measucement concept 1s
as follows. Additional pseudo states required for proper control action
are obtained via design of a wulti~rate or multiple-order sampling se—
quenze in the pseudo measurement approach, while the estimate of system
states not measured 1s attalned by desigun of a2 dynamic subsystem in the
observer approach. The pseudo measurenent concept i1s based on using
information contained in a scalar measurement, sampled at a high rate,
to generate a lower rdate measurement vector. This vector is likened to
pseudo states since it effectively provides distinctively different
information in the form of separate sampling sequences shifted in tiume.
However, 1t should be noted that the pseudoc measurement co. =pt is not a

state estimator, but a new design concept.
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Several circumstances arisce In applications where the pscudo mea-
surement concept, by exploitieg the unigque chavacteristics of multi=-rate
and maltiple-order sampling, can have consicerable favorable impact.

° 1t is desirable to winimize the number of sen-
s50rs, Or to

. Provide for gracefully degrading system porfor-
wmance in the face of sensor fallure.

L] Not all the states are measurable.
L] Some measurements are noise free.
® Outer navigation loops are noise free.

L] Outer navigation loops are updated ut inherently
slow rates.

When one or wmore of these circumstances prevail in a particular
application, the contribution of this theory will be in terms of more
simple control laws, increased system performance, or more system flexi-
biiity in accommodatiug failures.

The report 1is organized in three volumes. Volume I contains the

theoretical developments as well as 1llustrative examples and case

studies,

Volume Il describes two algovithms useful in the analysis of wulti-
rate systems, while Volume III gives FORTRAN listings for these algo-
rithms. The first algorithm converts a continuous transfer function in
the s—domain inte alternate desc “iptions in the z~, w-, and w’-domains.
The second algorithm calculates a low data rate discrete trausform piven
a high data rate discrete transfer {function. This algorithun ig

presented in fection IV of Volume I and later derived in Section IV of

Volume 1I.

Volume I is organized as follows. Vector switch decomposition tech-
niques, which provide a straightforward model of the pseudo measurement
vector, are reviewed and extended in Section II. Also, in this section
the pseudo measurement concept is defined and illustrated with an exam—

ple.
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An important facet of this effort hinges on the ability to interpret
the properties of mulci-racte/multiple-order closed-loop systems.  Fre—
quency response techniques provide effactive tools to investigate the
spectral characteristics of tuese systems. Toward this end, the fre-

quency response of the continuous variables of eingle-rate systems are

reviewed in Section III, with the necessary extensions for the analysis

of multi-rate systems given in Section IV.

The extensions given in Sectior IV make it possible to investigate
the spectral content of the continuous variables of multi-rate and/or
multiple-order configured systems. 1In aadition, an important relation-
siip is deduced which makes it feasible to apply the switch decomposi-
tion/trequency response technique to the error analysis of simulations
of continuous systems and/or discretely controlled continucus systems.
An 1illustrative example demonstrates significant spectral differences
between a closed-loop system (employing an analog or digital controller)
and an all-digital simulation of the closed-loop system. The example
also treats the problems encountered when simulation sotrtware 1s imple—
mented on twe different (independent) computers, each working in a

slightly different frame time,

The application of the pseudo measurement concept 1is ciscussed

further in Section V. In particular, a case study using a longitudinagl
mudel of the Y-16 is used te study the practicality of the approach

(e.gs, Iuvestigate the magnitude of the required feedback gains).

A summary and cenclusions are preseanted inm Section VI
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SECTIOX I

VECTOR SWITCH DECOMPGSITION: CONSTRUCTION
OF THE PSEUDO MEASUREMENT VECTOR

A. INTRODUCTION

The prime objective of this research effort s the realization of
closed-loop digitally controlled systems with desirable attributes not
available in continuously controlled (analog) designs. To appreciate
the considerable merit of this viewpoint one need only recall that
couplers (data holds) which tie the digital computer to the control
actuators are themselves filters possessing characteristics which are
unrealizable with coatinuous linear fillter sections. For example, the
slewer dzta hold forces the contral actuator to mova with smobfh ramp-
like deflections which c¢losely approximate the 'continuous" deflec-
tions. Yet, it inserts deep, wide notches lato the frequency response,
at multiples of the sampling frequency, which have no counterpart in
contivuous linear filter theory. The impact of this frequency response
characreristic wupon system performance can be favorable or wafavor-
able. It caa certainly have an unfavorable effect 1f wunanticipated
inputs and/or control inputs are attempted or required at o.. of the
notch frequencies. However, when anticipated, this frequency response
characteristic may be used to advantage (for suppressing feedback of

structural modes, for example) and its disadvantages avoided.

In short, the ability of the digital computer to perform a variety
of wunusual operations on input data leuds credence to the idea of
achieving closed- loop systems with unusual attributes. This is the key
polnt of the present study where the logic of the computer is used to
take a scalar contlauous output signal, sample it at a relatively high
rate, aud then sort it out (in a particular fashion) iato a vector of

"pseudo'" measurements. The potential of the idea is significant, since




it offers an alternative path approach for providing gracefully degrad-

ing system pevrformance in the face of sensor failure.

To begin, there is a brief review of the multi—-rate transform domain
{primarily in order to review notation). Then, to put the pseudo meas-
urement concept in proper perspective, we discuss vector switch decompo--
sition ana show how it is uwsed to model multi-rate systems. Following

thls, a multiple-order sampling model is discussed.

Since any viable digital theory must be capable of modeling computa-~
tional delay, a discussion of non-synchronous sampling is included since

it provides a basic theoretical structure for treating time delays.

Completing this background description, we are then in a good posi-
tion to set forth the pseudo measurement concept and indicate, via aun
exauwple, its potential for achieving closed-loop configurations with

unusual attributes.
B. REVIEW OF THE MULTI-RATE TRANSFORM DOHAIN
A basic property of the transform domain algebra developed in Ref. 1

is that a high sampling rate ‘operates through'" a low one, provided that

the ratio of the higher to the lower 1s an ianteger value,

T/M T/N
R 7 c ,C

T/M T/N

Figure 1. Multi-Rate System




Tn Fiz. 1, the output equation fis

c = GrT/M (1)
Then

¢T/N [ grr/M|T/N

= CT/N RT/M (2)

where N/M is an integer. The superscript notation denotes the sampling
rate involved. TFor example, Cr/N indicates that the signal € is sampled

at N/T samples per second.

The general notation CT/N jmplies either CT/N(s) or CT/N(z) in this
report, where CT/N(S) represents the Laplace transform of the sampled
coutlnuous time function ¢*/V(t) and ¢'/N(z) its corresponding z trans-—
form. The correspondence between a sampled function in the s-domain and

its z-~transform 1is given by

/M@y = TN ] _ st/ (3)

For continuous, stationary linear systems CT/N(s) is in general a non-
alg:braic functioun of s and CF/N(z) is obtained from CT/N(S) using the

eST/N, However, CT/N(Z) could also repre-

simple change of wvariable z =
sent the z~domain model of a completely discrete function (e.g., digital
computations in a computer) and thus have no direct counterpart in the
continuous domain., In analysis and design no distinction 1is required
between the z-transform function derived from a sampled continuous func-
tion f{e.g., CT/N(B)] and the z~transform function that wmodels a com—
pletely discrete functifon. The z—transform (and {ts extenslions the w-
and w -transforms) thus provides a unified analysis and synthesis tech-
nique for systems contatining both continuous and discrete elements
(i.e,, hybrid systems)., This abjility to model continuous and discrete

elements In a common discrete domain is perhaps the most fundamentally

useful property of the z~-, w—-, or w'-domains,
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The transform product in Eg. 2 is obtaired by establishing a common

definition of the z-transform variable. That 1is,

y
GT/N(Z)RT/M(z ) = GT/N(z)RT/M(zN/Y) (4) |

' where

3 2 = oST/N , 2y = aST/M (5)

The procedure is to first calculate the T/N and T/M z-transforms for ?

G(s) and R(s), respectively, and then replace the transform variable z
in RT/M(zm) with z = ZN/M, ?

For a given G and R, a recursion equation can be written for Eq. 2

in a manner that is similar to the single-rate case for which N =M -

e

To see this, consider a simple example, for which we define z = eST/N, . h
Let |
I

1 4

Then k
T/N = %2 ____ gT/M 7 2

¢ >~ o-T/N 7 |

If the running index of the recursion equation, n, is tied to the z“1

operator, the time domain equation can be written directly using the

fact that the input is set equal to R(s) whenever n 1s an integer value A
of M/M. Thereforc,

Rp n/(N/M) = Integer
n-1 * (8)
0 n/(N/M) # Integer

¢y = e TN g

This agrees with the single-rate case when M = M = 1.

Cn = e” T Ca-1 + By (9)




These results are appreciably different i1in the presence of data
holds.

Ref,

However, the results remain quite tractable and are detailed in

1 for the zero—-order hold as well as the sglewer data hold. The

slewer data hold 1is a coupler which produces a smooth ramp output over

the inter—-sample period and, in addition, provides a continuous output

even at the sampling instants. Transfer functions for representative

data holds are given in Tablaz 1,

TABLE 1. SOME REPRESENTATIVE DATA HOLDS
DATA HOLD TRANSFER FUNCTION 1
Zero-Order M . | —_g:iz
Hold 0 s
First-Order _ 2 1
Hold Mi Mo(s + T)
Second-Order _ ol L2 1l
Hold M2 MO\S top s A 2
M2
Triangular My = 0 osT
Data Hold
M2
Slewer Data M - 0
Hold slew T

The "T/N" approach 1s very useful in the analysls of closed-loop

multi-rate systems, since the transform domain equations can be written

directly, without the need for computing an inverse. Uslng these equa-

tions, the time domain equations can be written in the sawe manner as in
the single-rate case.

An example {s described in Fig. 2

b oA e ————— it e - g T S R 1+

—— e = ——
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ZOH

R E ,EV3[ s s+ X
o T/3 s s2(s+2)

Slewer

Xa 5 + 3 . ('_E‘SVZ )2 /s

52 +25+5 T/2 s2 T/2

Figure ?. Closed-Loop Multi—-Rate System

First, writing the algebraic relationships for X; and Xy glves

- o=8T/3
X, = 25 + 1 1 e gT/3 (106)
s%(s + 2) s
[y -sT/212 s 42 1 /3 (b
Xy = xL/2
: l (1/2)s? s + 25 + SJ 1
Recognizing that
gT/3 = RT/3 . x%‘/fi (12)
and taking the T/N transform of both sides produces
-sT /" T/N
xT/N 2 s + 1 L - e7sT/3 (RT/3 - xI/3) (13)
1 SZ(B +2) s 2
i T/N
i - 2
; XT/N = (1-e ST/Z) s+ 3 xT/2 l (14)
| 2 (T/2)s2 62 + 28 + 5 1 ’
9 ;
W L S Gl by e T B, T TR G S M ' SR e 1 ‘
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Since the outer sampling operator {*}T/N operates through the inner oue
if the ratio of the inner sampling perlod to the outer sampling period,

T/N, is an integer, Eqs. 13 and 14 reduce to

T/N
(RT/3 - X’%‘/B) (15)

xT/N - [(1 - e3T/3)(s + 1)
1 s3(s + 2)

XT/N

—sT/212 T/N
(1 - e7sT/2)%(s + 3;] xT/? (16)

(1/2)s2(s2 + 25 + 5

Observe that two transferm domain equations compleiely define the
closed-loop fifth—order system (exclusive of the data holds), FEquations
15 and 16 can be used to calculate the intar-sample response with any
desired depree of time resolution by increasing N. The only restriction

is that N must be divisible by 2 and 3; otherwise, it is arhitrary.

The T/N approach is developed in detail in Ref. 1. It serves as the
basis for exteading the concept of frequency response, from merely being
the magnitude and phase of the sine wave that fits the sample points at
the sampling instants, to the case of fitting N sine waves to the sample

points and N - 1 inter-sample points.

C. VECTOR SWITCH DECOMPOSITION
AND MULTI-RATE SAMPLIRG

In essence, switch decomposition is a procedure wherein systems
having multiple sampiing operations (occurring at fixed but unequal sam-
pling intervals but with a sampling pattern which 1s repeated over a
fixed, finite time interval) are converted into an equivalent single
sample rate forwat. As originally introduced by Kranc (Ref. 2), the
method used a summing point methodology which proved to be extremely
cumbersome when the ratiog of the sampling perjods become high. For
this reason (and also hecause evolving state transition methods were

tending to push transform methods into the backgrcund), the method fell

10




into disuse. tHowever, there 1s much to recommend the switch decomposi-
tion concept for use in both time domain and transform domain analy-
SeS. In the subsectlon that follows we will review the basic concept
and remove some earlier restrictions by recasting it 1In rector form.
The vector form simplifies matrix block diagram manipulation for wmulti-

loap, multi~rate sampled systems.

An example will make the basic idea quite tramsparent. Congider ihe
continuous signal shown In Fig. 3a to be sampled at 3/T samples per
second. This results in the sample sequence shown in Fig. 3b. The
sampled wvalues have been numbered for easy reference. Suppose we now

gsample the continuous signal with a sampling periocd, T. This results in

a) R
p) RT3
c) RT
' ; 1° B
|
sT/3 0T
d) (e R) {j Af“ 3
R R} '
s 8
e) (ePVIR)T
»5 j ; inz Jw
3

Figure 3. Decomposition of a Sample Sequence
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the sample sequence consisting of sample numbers 1, 4, 7, 10, 13, ...

shown in Fig. 3c. Define this sample sequence to be RL.

Next, advance the continuous signal R by T/3. Then sample the ad-
vanced signal with a sampling period, T. This results 1in a sample
sequence consisting of sample numbers 2, 5, 8, 11, 14, ... shown in Fig.
3d. Define thils sample sequence to be (eST/3R)T. Finally, advance the
continuous signal R by 2T/3, and sample it with a sampling period, T.
This results 1n the sequence consisting of sample numbers 3, 6, 9, 12,

15, ... shown in Fig. 3e. Define this signal sequence to be (eZST/BR)T.

The significance of the switch decomposition concept resides in its
ability to provide an alternative expression for the original sequence
RT/3 in terms of several quantities which are each sampled simultane-

ously every T seconds. This alternative expression for RT/3 consists of
the sum of RT, (EST/jR)T, and (eZST/BR)T:

RT/3 = RT + (e3T/3 R)T o=sT/3 4 (e25T/3 g)T ¢~251/3 (17)

Fquation 17 has a simple factored equivalent which 1Is the product of two

vectors and the scalar R,

1 T

RT/3 = l, e—ST/3, e—ZST/3 eST/3 R (18)

\‘l_est/;J }
Or, more compactly,
RT/3 = e, 0T (19)

where

W = 1, e-8T/3,  ¢=2sT/3 (20)

12




and

1

W= eST/3 (21)

eZsT/B

The extension of this scalar result to the vector case is discussed
in detail in Ref. 1 and will not be covered here. We proceed to a dis-—

cussion of multiple-order sampling.

D. MULTIPLE-ORDER SAMPLING

Suppose that a group of sampling operations in a system is rvepeatea
every T seconds, the intervals between successive samples in the group
sequence being unequal. This is depicted in Fig. 4 for an example case
of four unequally spaced samples occurring before the sampling sequence
repeats. In Fig. 4 the notation X* 1s used to denote that X is sampled

in a multiple-order manner.

10 12 13
j T
‘ T, T, Ts T T+T, 2T eT+T, 3T
-~ Figure 4, Multiple-Order Sampling

The multiple-order sampling operation can be modeled in terms of a
single-rate sampling operation, using the same type of notation given in
Eq. 19. let

X* = ww,xT (22)

13
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where

W o= [ L —srl, e'STZ, E-ST} ] (23)
and
sT T 5T .
W, = [ 1, e’ 1, s 2, "3 ] (24)
The sequence specified by Eq. 22 is shown in Fig. 5. Note that
XT
(esrl X)T
X* = uw,x)T = W (25)
(est X)T
(eST3 X)T
L _
= xT + e—STl(eST1 X)T + e—STZ(e512 X)T + e-ST:}(eST3 X)T (26)
The extension to the case where X is a vector is straightforward. For
example, if X is a two-dimenslonal vector, let
w, | 0
W = (27)
0 Wy

where the vectors W, and W, are each analogous to the W vector defined

by Eq. 23 but each is appropriate to the sampling sequence for the cor-
responding element of the X vector.

14




(e3T3x)7

sT )T A —
\
9

Figure 5. Components of Decowpcsed Signal

E. NON-SYNCHRONOUS SAMPLING

Non-synchronous sampling is a basic tool useful for modeling dis-
tributed computation architecture, data skewness in the A/D and D/A con-
version processes as well as the internal computaiional delay of the
digital computer. By definition, non-synchronous sampling occurs when
all the systems’ sampling operations are repeated at the same rate but

occur at different instants of time (refer to Fig. 6).

In Fige. 6 both continuous signals, x; and Xy, are sampled at 1/T He,
but the x, sampler is "out of sync" with the x; sampler by T, seconds.
The sampling operation for x¥ is shown symbolically in Fig. 7a and for

x5 ia Fig. 7b. (* notation on Xy 1s used here to Indicate an "unconven-

tional™ sampling operation.)

15




T
X, 4

*
X2 %2

Figure 6. A Set of Nen-Synchronously Sampled Signals

X xT X X5
—_—l_J/,___g-_ ..j;_‘ w ___-//__¥> W __ig;
T * T
{a) {y)

Figure 7. Sampling Notation

Figure 7b models the non-synchronous sampler with a synchr

o]

Ny
naous

sampler by preceding the sampler with thc operation w* followed by the

operator W. That 1is,

. :
Xy = w(w*xz)? (28)

where

W e—sTo

, W = e

(29)




Proceeding according to Eq. 29, one advances Xy by T, seconds, sam—

ples at the 1/T rate, and then dclays (w*xz)T by 1, seconds to obtain

the time scquence (refer to Fig. 8), Note how the non-synchronous sam-

pling operations on xy 1s modeled in terms of a scalar factor; thus the

dimension of the equivalent single-rate sampled signal, (W*x?)T, is not

increased.

The model reaaily extends to the case where x 1is a vector.

Figure 8., Advance, Sample, Delay

F. THE PSEUDO MEASUREMENT CONCEPT

It has now been showu that vector switch decomposition can be used

to model multi-rate and multiple-order sampling operations.

non-synchronous sampling (i.c.,

Moreover,
skewed data) can be treated, and there-

fore, of course, cemnutational time delays can also be included. We are

now in a pood position to discuss the pseudo measurement concept, using

Fip. 9 to indicate the several options available.

17




D e T O

X Y » ¥T X
__..Tw W

Figure 9. Pseudo Measurement Block Diagram

First of all, the notation w*, W in Filg. 9 is used to denote either
multi-rite or multiple-order sampling operations. The essence of the
pseudo measurement idea lles in the followlng observations:

L x* is the multi-rate (multiple-ovder) sampled
equivalent of X. It has the same dimension as
the vector X.

° YT has tue row dimension of W which may be con-
siderably greater (but never less than) the
dimension of the vector X.

Rather than feed back the entire fixed sequence of sampies in a
(scaler) element of X*, one may elect to feed back selected, individual i
samples in the fixed sequence. These individual samples are clements of

the vector signal, T, Of course, on2 must exercise due regard for

physical realizability (a sample cannot be used before it {s availa-
ble). Nevertheless, the digital computer has the ability to sort out
individual samples from the sequence and deposit them in their respec-
tive appropriate reglsters. This sorting process in effect creates an
enlarged ve:tor of measurements at a slower effective sampling rate. We
shall call the elements of this enlarged measurement vector pseudo
measurements because they are merely alternative samples of the same

baslc variables. f

As shown 1in Fig. 8, the YT vector is defined in terms of time ad-
vance components and therefore caution must be used in 1nterpreting the
significance of the various components (again, a sample cannot be used

before it 1s available). To avoid this difficulty, the pseudo meas-

urenent operation 1s redefined in terms of "hat" operators (refer to

Fjgl 10).




If, for example,

then
1 0 0 0
] 0 e 70 0 0
W =
0 0o e STl 0
—-sT
0 0 0 2
L 9
and
[~ 7
1
esTo
W* =
eSll
eST2
[ I i

modeling components might appear as:

19

Figure 10. Reformulated Block Diagram

W = [ 1, e-sTO, e-STl, e—st ]

Hiiag

e co- RS T U Rt S RN PLS N T R S

(30)

3y

(32)

Or, if multi-rate sampling is used, the extended switch decomposition




W = [ 1, eST/3, e28T/3 ]' (33)

and
w o= [1, e-sT/3' a—87/3 ] (34)
Then
1 0 0
0 0 e-29T/3 -
Clearly,
— ar _
1 0 0 xT
x* = XU/3 - \:J(W*X)T = |0 esT/2 0 (e8T/3x)T
0 0 e~22T/3 (e231/3A)T
- - - -
_ -
= e_ST/3(e8T/3X)T (3(‘)
e—ZST/B(eZBT/3X]T

Thus, k is the desired vector; each component has the samples in the

correct temporal sequence (refer to Fig. 11).
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Figure 11l. X, XT/3, and the Components of x1/3

G. AN ILLUSTRATIVE EXAMPLE

Consider the single-rate system shown in Fig. 12, where M is a zero-
order hold and the plant is

363 + 1552 + 355 + 13
G(e = = (37)
(6) (s + D[ (s + 27 + (3)2]

- e g ame o

Suppose C(s) (a scalar) 1s the only outpul of the system avallable for

feedback, Further, suppose the deslgn objectlives are to force a unity

steady-state response in € to a unit step input and Lo obtaln an as-

)
signed set of poles for the closed-loop system. Iet D(s) represent

W 3

P p.»wmmﬂ...a:mw‘matﬂxnw (.
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Figure 12. A Slngle-Rate Controller, T = 1,0 scc

the plant poles, i.e., the poles of G(s). The poles for the discretized

plant plus data hold are represented by D{z) where

omT o« Nz)

(GM) 5 (38)
and

(z) = (z - 0.3679)[(z + 0.1340)2 + (0.019)?] , 7T = 1.0 (39)
with

[s +alT o 2 «cmal
{is + a)2 +b2] o [z =¢2T cos b? + (7T sin bT)?2]
= 22 - (20727 005 W)z + 28T (40)

“he arsipned poles for the closed-loop system are represcuted by A(z)

where

A(z) = (z - 0.1353)[ (2 = 0.1988)2 + (0.3096)2] (41)

— e g ———




The roots of A(z) may be thought of as counterparts to
A(s) = (s + 2)[(s + 1)2 + (1)?2] (42)

for a continuous system. This particular assignment is quite arbitrary
on our part and, mworeover, we are not particularly advocating pole
agssignment as a designﬁﬁethod; our cbjective 1is to demonstrate that the
design goals can be achieved via the properties of multiple~order sam-

pling.

It may be difficult to achieve these goals through design of the
filters ¥ and F,. For example, from the equation (see Fig. 12)

cT = [1+ (GM)TF{Fglwl (o)™ FTRT (43)

1t can Le appreciated that the gain must be split between F; and F,
filters in order to achieve the unity step response objective. More-

over, it is not teadily apparent that one can obtain
D(z)[1 + ()T (F}Fg)] = A(z) (44)

and stil) maintain a third-order characteristic equation (an fimplicit

requirement of the pole assignment objective).

Having considered a single-rate approach, consider nexﬁ what multi-
ple~order sampling has to offer. A multiple-order sampled configuration
is shown 1n Fig. 13. 1In this simple configuration, multiple-order sam-—
pling 1s used only on the plant output varlable. Multiple-order sam~
pling could also be employed for sampling the input, R, and at the input
to the data hold, U. Restricting the e¢xample to sampling the output
varfable willl enable us to demonstrate the possibilities of multiple-
order sampling without adding unnecessary complexity. The multiple-
ord.r sampling assumption allows us to feed back the pscudo measurement
vector C* fustead of the scalar measurcment ct. Furthermove, the intent
is to use ouly a paln matrix, K, to attaln the design objectives, The

particular cholce for W and K is
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Flgure 13. A Multiple-Order Sampling Controller,

T = 1.0 BCC
w o= [ 1, e~(1/10)s eTrhs  aTebs, e—.?s] (45)
and
K = | K5, Xz, K3, K4 Ks ] (46)

Then




T i

and

p ]
p(n/lﬂ)s
= b4s
W, = @48 (48)
ea6S
a+/8
From Fig. 13 (T = 1.0 sec),
. ~ JRUDYI
uT = (1 o+ (kg T (w,o)T]7 &T
(49)
where
j — -
. M 0 0 0
1 g 0 M 0 0 y | a-sT 505
Mg = Mdiag ' = > = —— 5
i 0 0 M O s
i
; LO 0 0 1\1_
and
cT = (o)t T (51)
But
" f ! ~|T
(kqW)T = ([K]M, KoM,  K3M, KgM,  Ksdlw |

{M[le Kpe™(T/10)s, Kyemeds,  Kye7r03, Kse"7sl; E

(52)
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or

~ 1
(Rg)T }Mlkl» Kge(91/10)5g=5, Kye-6ses, Kue-dse™s, Kgerdsems||”

»

Ky, Kpz™l, K3z7l, Kie7l, Kgzl] |z = esT

(53)

Reducing Eq. 52 to Eq. 53 requires the use of the advanced z~traunsform

on each term in the Eq. 52 vector. For example, evaluating the second

term
[M(kye(ST/10)s e—s]]T (54)
gives
[K23(2n/10)s] T
(1~ esT)e™s e (55)
S SR
Then
2= 1 -1 Kpz~l 6
z  ° K2 z=71 = Koo (36
The remaining terms in Eq. 53 are evaluated in a similsr wanner.
Inserting Eqs. 49 and 53 into Eq. 51 glves
T = (GM)T{1+[KI, Kpz™l, Kazl, x4zl K_c,z'l](w*GM)T;—l rT
(57)
where
1 7
e('ﬂ/lO)s
W, = e-hs (58)
e+ 08
L e7s
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and

3 2 :
C = N _  3s’ 4 15s¢ + 35 + 13 (59)
D (s + D[(s + 2 + (12]

Carrying out the transform operations indicated in Eq. 57 produces

) _ -l
N(z)]
N(z)g ‘
N(z)3
N(z)y
~1\ Nlz); z=1 - ~ - = 2 |
ct = (Ez_) 5z \* +(—z—\)[K1, Kpz™l, K3zl RuaTh R [ egr = ) RT
(60)
T
Y ] (2, |
(1 /10)sy N(z)»
< b2y N(2)3
(-!'68 N N(Z)4
e*’8 N N(z)g
anT = (=1 = - =Z—l)- - N
(W, GM) ( . ) oD ( z D(z) (61)

Performing the matrix multiplication and taking the _uverse in Eq. 060

gives

2
¢l = (Z - 1) e (Z—TT) = 1T (62)
e D(z) (T%T) P(z) + KN(z)
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with
KN(z) = KJN(z)| + KoN(z)oz~) + K3N(z)3z'l + K4N(2)4Z—l + KSN(Z)5Z—1
(63)
Equation 62 further simplifies to
cT - NG | RT
Z 7
(Z—:‘T) D(z) + KN(z) |
(z = 1) N(z)
é 1 |gr (64)
zD(z) + (z - 1)KN(z)

The form of the entries in the column vector (W*GM)T (Eq. 61) will
be (aoz3 + a122 + ajz + a3)/D(z). These are tabulated in Table 2 for a
basic sampling cycle period of T = 1.0 seconds. The first column corre-
sponds to N(z); in Eq. 61, the second column to N(z);, and so on. The
feedhack gains that accomplish all design objectives are tabulated in
Table 3, The design objectives are repeated below:

g Closed-loop pole assignment as specified by
Eq. 41.

L Unity steady-state rvesponse in C for a unit step
input R.

The first objective is satisfied by equating like coefficients in Eq. 4l

and the denominator in ¥q. 64. That is,

zD(z) + (z - 1)KN(z) A(z)

= (z - 0.1353)[(z - 0.1988)2 + (0.3096)2]
(65)
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TABLE 2

NUMERATOR CUEFFICIENTS AS A FUNCTION OF ADVANCE PARAMETER A

A 0 n/10 N <6 o7

ag 3.000000000 2.47558005) 2.251930058 1.773€97950 1.584956596

aj | =2.314717621 | -1.623868245 | =1.340786259 | -0.756522207 | -0.537430945

a, ~0.195116512 | -0.029566508 | -0.095749095 | -0.206712756 | ~0,235858883

aq | =0.067316458 | -0.009062870 | -0.002312250 | -0.002620445 | =0.001415664
Note: D(z) = (z - 0.367879441)(22 + 042677961830z + 0.018315639)

TABLE 3. FEEDBACK GAINS
¥ 0.091506404
Ky -1.494955697
Ky 2.832023694
Ky, ~4,131755870
Ks 2.703181447
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The second objective Is realized by applying the final value theorem tn
Eq. 64 for a unit step input RT = (2)/(z - 1),
~T . Lim (z-1) T
Cl(=) r =1 o cl(z) (66)
Betore leaving this example, the physical implications of acquiriug
the c* output signal in Fig. 13 will be addressed. The multiple-order
sampled signal c* is given hy

¢t = w7

T
B 0 0 0 o} /T 1 ]
0 e (n/10)s 0 0 0 e (T/10)s
=10 0 e+ 48 0 0 @ 48 C
0 0 a a=ebs 0 l o658
_0 ¢ 0 C e'7S_J | . 7s g
[~ cT 7
e~ (T/10)s (o (7/10)s ) T
= 4s(c-tsc)T (67)
g+ bs (e (SC)T
i e"7‘;(e'7SC]T R

This sampling scheme analytically models (via single rate sampling) the
actual physical operations within an analog-to-digital converter that
produce samples of the continuous output variable C in a multiple-order
format. These multiple samples must be physically separated according
to the selected scheme as indicated by the w* vector and lAJ matrix. _ In

this example, a group of five samples in a muttiple—~order format must be

physically generated every T seconds at intervals of (0)T, (w/10)T,




0.4T, 0.6T, and O0.7T seconds. These 1individual samples are stored in
appropriate storage reglsters within the computer until all samples
within a group are obtained. This group of samples 1is then added toge-
ther with each sample first multiplied by an individual gain factor (K,
Ky, Kq, K4, Kg). This process implies that a full frame of delay equal
to T seconds 1s inherently present In every component except the first.
That is, as previously pointed out, samples cannot be used to form the
scalar feedback signal in Fig. 13 bhefore they are available. This
required physical delay shows up in the analytical model as Eq. 53

(repeated here):
(KMdW]T = lKl, Kzz—l, K3z_l, K4z—1, sz_l] (68)

wheve the 271 delay factors assure that samples from the previous frame
time (n - 1)T are used to form the scalar feedback signal for the naT

frame time.
H. SOMK PROPERTIES OF THE PSEUDO MEASUREMWNT CONCEPT

While this is not a particularly realistic dezign problem, a number
of properties of the pseudo measuremert concept, which accrue from use
ot multiple-order sampling, have been demonstrated:

® Achleved unity steady-state gain without forward
loop compensation.

L Generated a five component multiple-order sample
vector frum a scalar analog signal.

° Asgipred three poles using only the one availlable
analog measurement.

. Avoided compensatlion networks.

® Accomplished pole placemeut with multiple samples
of a single output variable (in distincticn to
single samples of several output variables).
This has been accomplished without using an ob-
server or Kalman filter to supply estiwates of
unmeasured states.
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We remark in conclusion that the pseudo measurement concept 1is not
the something-for-nothing gambit that it might appear to be. 1In connec-
tion witk the illustrative example, a price is paid. This price is more
frecuent sampling of the plant output varlable than for a single-rate
system having the same basic =ample sequence rate. That 1s, additiovnal
samples of the plant output variable have been used as an alternmative to
using digital filters (compensation) or as an alternative to measuring
additional plant output varlables. In more complex multiple-order sam-
pling schemes the geneial nature of the available tradeoffs will be
slmilar to the alternatives for our simple example. A three-way trade-
off (among number of output variables measured, number of samples of a
given set of measurements taken in the sampling sequence interval, and
complexity of digital filtering) will exist. Since "number of output

variables measured” translates into "number of sensors,” the tradeoff
against "number of samples” greatly favors taking additional samples in

terms of practical system hardware considerations.

The tradeoff of "number of samples of a given set of weasurements
taken Iin the sempling sequence interval” and “complexity of digital fil=-
tering” also favors taking additional sawples. This is the case even
though the number of registers required 1s not affected strongly. How-—
ever, the number of digital multiplications required may be reduced sig-
nificantly. This, in turnm, can reduce computational burden, which is
especially {important in a microprocessor computing environment. Hence
the potential contribution of the pseudo medasuremeni coucepi. (o cost

reduction in system hardware is realized.

The pseindo measurement technique also has the potential to provide
for gracefully degrading system performance im the face of sensor fafl-
ure. For example, if a senzor fallure can be identified and isclated,
then 1t 1s possible to divert the computing capaclty in the failed
sensor path for processing of additional samples of different output

variables having operatlve sensors. Tor this use, the control law is

restructured in a predetermined way following a fallure. The way

e . a




.o

Flas

in which the control law is restructured is dependent upon the particu—
lar failure. This may enable significant reduction in number of redun-

dant sensor components when coupled with so-called analytical failure

identification techniques. The latter compare the measurements of dif-

ferent output variables for consistency.

Finally, we remark that the sampling sequence, within <he basic T
frame time of 1, e—n/lOs’ e v4s, e-’6s, e"7s, was selected only to
demonstrate a multiple-order sampling eunvironment. There is wnothing
especially magic about it; in fact, it might even be a poor choice. We
cannot tell this until the tocls needed to access the spectral implica-

tions of this choice (the topic of the next two sections) are developed.
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SECTION IIL

FREQUERCY RESFUNSE OF SINGLE-RATE SYSTEM

A. TNTRODUCTION

When a continuous, stable, stationary linear system is excited by a
sine wave, 1ts steady—-state output 1s comprised of a single wave at the
same frequency as the input. It differs from the input wave ouly by a
phase angle and a wagnitude factor. Moreover, it ifs unnecessary to com-
pute the actual transient response of the system when 1tsg behavior over
large epochs of time is of Iinterest, since both the magnltude factor and

phase angle can be read from a Bode plot.

A sgimilar but more complex situation exlsts when a sampler and data
hold couple the sine wave input to the contfauous system. This configu-
ration is referred tc as a "discretely cexcited systen. Clven that the
continuous system 1s stable, the continuous output waveforuw will contain
a wave at the fundamental frequency and all <f 1its allases. Thus, if
the system is forced with 1 sin bt, O < b < 21/T; the output will zon-
taln terms at frequencies b, b + (2n/T), b + (4n/T), .... The relative
amplitudes and phase angles will depend on the data hold employed as
well as the system transfer function. Nevertheless, given the data hold
and system transfer functions, the magnitude and phase angle for each
and every component can be read ftrom a patrticular “Bode plot.” Notice
that this coucept of frequency response 1s more comprehensive than the
traditional concept of the "sampled spectrum” (see, e.g., see Ref., 3),
whict is limited to deteruwining the single sinusold that fits the system

output samples at the sampling instants.

In the subsections that follow we review the frequency response con~
cept for continuous systems and then proceed to the frequency respouse
for discretely excited open-loop systems. Finally, the manuer of appli-

cation for single-rate sampled closed~loop systems is glven.
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B. CONTINUOUS SYSTEM FREQUENCY RESPONSE

It will be helpful to first review the frequency response concept
for continuous systems. Let R 1o Flg. 14 be a unit sine wave input with

frequency N rad/sec. The Laplace transform of the output is

C(s) = G(s) R(s) = Gls) —>—p (69)
84 + wf

Figure 14, Continuous System

Equation 69 can be expanded in partial fractions as

Bs " Terus assoclated
+ with characterist ic (70)
polynomial of G(s)

AW

(¢)
-+
52 + mé 52 + m%

C(s)

The bracketed term Iin Fq., 70 determines the characteristic behavior of
the svstem which can he stable (nepative eigenvalues) or unstable (posi-
tive ocigenvalues). Nevertheless, the steady-state sionusoidal behavior
is completely defined by the partial fraction cocefficients A and B,
since once they are known the steady—state time response can be written

direcrly as:

1im

c(t) = A sin uyt + B cos wgt
t o )

\[Az + B2 gin (w1 + ) S (71)

Jhere 4 = tan~! {(B/A). The detalls of solving for A and B show clearly

the rclattonship between the Bode plot and the steady-state waveform.
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To solve for A and B, multiply Eq. 70 by [62 + w%] and evaluate the

result for s = jmo:

Terms associated

G(S)w°|s=jmr = (Aw, + BS)|s=jw0 + |} with characteristic (sz + w%}lszjmo
4

polynomial of G(s)
(72)
or
. = B = a2 + 82 e tan”l(B/A) . ¢y
G(.,)IS=jm0 A+ iB A€ + B¢ el C(jwg) (73)

To summarize, we sce that a sinusoidal input at frequency , produces a
stecady-state sinusoidal output waveform having the same frequency. It
differs ftrom the 1input only by a magnitude factor and a phasc shift.
Both magnitude factor and phasc shift for any given input frequency, w,,
can be read directly from a Bode plot for G(jwo). That 1s, for any
glven input frequency w,,

At 3B G|y, (74)

The sections that follow expand this "frequency response'" viewpolnt to

include disc-etely excited systems,
C. MATHEMATICAL PRELIMIMNARIKES

Let R be a sivusold of unit amplitude and frequency b rad/sec. 1If R
1s saapled at 1/T sawples per second and is then described {n terms of a

sample sequence having N/T sampies per second, the result is:

Y = - 2N sin bl , z = ST/N *
2¢N = 2(cos pT)2N + 1

(75)

*The notation follows Ref. L. Tthuupcrs$7§pt denotes the pertiod of
tbe sampling operator. Vor example, R° and R denote saupling perlods
ot T ind T/3 seconds, respectively.
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The following development is for later use. First, find the N factors

ol the denominavor of Bq. 75. This, in turn, permits parctial fraction

expansion. This expansion contains terms which caorrespond to sampled
olementary time functions.  For example, if f(t) = sin bt, then:

. 2z sin bT

T = (stn b7 =0y = -2 bl (76)

22 = 2(cos bT)z + 1

However, an elementary sampled time function corresponding to

o s o0
F(z) = ——--SInbv : an

22 + 2(cos LT)z + 1
is not fmmediately apparent (the denominator of Eg. 77 is one of the N
Factors of the denominator of Eq. 75).  This sftuation is remedied by
adding 7 to the triyg function arguments so that F(z) in LEq. 77 has a

recopnizable time domain counterpart.  For example, Fg. 77 becomes:

. =z sin [b+(n/T)]IT s T
() 722 ~ 2 cos [bt(u/THIT z + 1 )]

Consider the denominater of Egq. 75 for the special case of N = 2;

2

2% = 2 cos bT22 41 = |7.2 - 2(cos L)—g-)z + lJ

2% + 2(cos -‘-ﬂ-)z + 1] (79)

The sign of the coefflclent of 2z in the last factor on the right-hand

slde of ¥Hq. 79 can be changed by adding 7 Lo the argument bT/2:

'

2h -2 cos bTz2 + 1 = ['1."" - 2<C05 -h—i')? + l} (?‘ - 23(208[(1) + %1) %:“z + l)
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Thus, for N = 2, the partial fraction expansion contains terms which corre-
spond to sampled sine and cosine functions not only at the lnput frequency,

b, but also at the first allas, b + (2n/T), of the input frequency.

The general result is obtained by induction by repeating the exerclse
for N = Ny and for N = N; + 1 (Ref., 1),

N-1
I (z2 - 2z cos

n=0

22N = 2 cos bT2N + 1

2n\ T

) 3]

(82)

Thus, the sampled sine wave, [sin bth, can be described alterna-
tively in terms of a sum of sinusoidal components at frequency b rad/sec

and its first N - 1 aliases sampled with period T/N,
D. OPEN-EOOP FREQUEHCY RESPONSE — CONTINUOUS OUTPUT SAMPLED

Conglder the system of Fig. !5 where G(s) represents an arbitrary
transfer function and M represents an arbitrary data hold. Suppose R is
a unit amplitude sine wave and the output is sampled with perfod T/N.

Using mulrl-rate sampling results from Section 1I,

SN o [arTI™N w (ouyT/N T

N . ,' .
= (@T/N . Esln bt s , 2z = cST/N (83)
22N = 2(cos bT)zN + 1
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Expand the right=hand side of Eq. 83 in partial fractions:

CT/N _’_ r\E A.nZ sin mn(T/N) + BnZ[Z - COS (un(T/N>]
‘ n=0 22 - 22 cos wn(T/N) + 1

+ [Terms due to modes of (GM)T/N] (84)

R, RT c cT/N
—/——.- M G /-—-]--
T T/N

Fipgure 15. Open—loop System

Assume that responses 1In the modes of (GH)T/N apprcach zero as t + %,
i.c., that all modes arc stable. This restriction simplifies the nota-
tion in the derivation (the development that follows 1s valid whether

the modes of (CM)T/N are stable or unstable). In Eq. 84,
w, = b+ , n=0,1,2,...,581

For the present, assume b € 2%/T. The steady-state waveform, at the

sampling instants, can be written as:

N-1

. T/N
lo))™ =3 (A sin wpt + B, cos mnt)] (85)
n=(

To sclve for An and B , multiply ecach side of Kq. B4 by

}zt - 2z cos mk(T/N) +- 1] . 0 < k & (N-1)

and cvalnate “or z = liwk(T/N). The only non-zero term on the right-

hand side of the result occurs fur n = k.
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R

PO

T/N 2N sin by

(cM)
72N~ (2 eos b1 )ul J

27 ~2 cos ag(T/N)z +1]
2=y (1/N)
NZ‘:] [Anz sin wn(T/W) 1 +B 2]z = cos ay(T/N))

n o Z‘/'—Z,' Qo8 u)n('l'/N)Z +1

(1722 con wy(/i 1] 212, (T/N)

(80)

For any n # k, the right-hand side of Eq. 86 is identically zerc cince

22 - 2[cos wk(T/N)]z +1 = [z - cos wk(T/N)]2 + (sin mk(T/N)]2
' (87)
vanishes when
z = liwk(T/N) = cos wk(T/N) + j sin wk(T/N) (88)
Evaluation of Eq. 86, subject to the constralnt of Eq. 88, is a
tedious chore (Ref. l). However, the result is relatively simple:
Ay, + B, = % (GM)T/N , z = e8T/N (89)

z=14w, (T/N)

Notice in particular the definition of z used in the evaluation.

To summarize, when the system is forced by sin bt, the steady-gstate
output waveform, sampled with period T/N, is given by Fq. 85. The coef-~

fleients Ay and B, in Eq. 85 are computed using Eq. 89.

For example, let

1 - esT

s G(s) = = A (90)
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= m—

so that

| - e-al/N (] - 27Ny

L

91
N(z - e-aT/N) (1 - z71) oD

1 T/N
N (GM)

It is instructive to plot the amplitude ratio of the frequency

response for Eq. 91 with N as a parameter. For the sake of clarity, the

plot is versus o rather than log w.

Refer to Fig. 16. Notice that over the range of frequency for the

plot, 0 & w < 8u/T, the N = 1 case amplitude ratio folds about the fre-

quencies /T, 3n/T, ..., 71/T; the N = 2 case folds about frequencies

2n/T, 4n/T, 6n/T; and the N = 4 case folds about w = 4%/T,

However, it
can also be observed that the various amplitude ratio plots are periodic

with frequency. For N = 1l this period is 2n/T; for N = 2, 4n/T and for

N =4, 8a/T. BEach period contains precisely the number of frequency

points (at the input or its positive alias frequencies) required to

match the continuous steady-state time responce at the sampling instants

-20

-20t N=4 /

ICT"N!dB

o o
=

&
\\

,._
.

| 1 I IS | 1 .
" er  3m 4w S 6w Tw 87w
w {rad/sec)

Figure 16. Magnitude Plot for N =1, 2, 4
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and at N ~ 1 equally spaced inter-sample points. Consequently, it is

the sampling frequency interval rather than the folding frequency inter-

val that is fundamental te generalizing the coucept of frequency re—
sponse.

Consider the use of Fig. 16. Imagine that a unit amplitude sine
wave with a frequency 7/2 is input., In the N = l case, our interest is
matching the continuous steady-state time response only at the sampling
instants with a single sine wave. The magnitude and phase angle (not
shown in Fig. 16) can be read from this plot at w = n/2 (or #/2 + 2n/T,
n/2 + 4T, n/2 + 61/T, ...; any of these points gives the correct
value). Clearly, if the objective is to match at the sampling instants

t

wlth a siﬁgle.g;nusqig, the frequency could be b plus any 2%/T multi
ple. One cannot kéll £he difference once the waveform is sampled. In
fact, the '"sub" aliases at b - (2n/T), b = 4n/T will alsoc work. These
Ysuh" aliases are the differencc terms which are prominent 1n wodulaiion

theory.

The N = 1 plot in Fig. 16 corresponds to the '"sampled spectrum' fre-
quency respounse of sampled data control theory. Consider the N = 2 case
wherein the objective is to match one inter-sample point as well as the
sample points. Let the input freuency be 7/2 and note that the points
at w =7n/2, /2 4 2n/T give the magnitude (and phase) for the sine waves
at those frequencies, as would the points n/2 + 4n/T, /2 + 6n/T. Sup-
pos¢ next that the input frequency is b = n/2 + 2n/T. Clearly, the
second required component could be read from the “first alias" at
b + 2n/T or the first sub-alias at b - 2%/T (or, for that matter, at a

host of other frequencies).

In the N = 4 case, four sine waves are required to fit three inter-
sample points as well as the sample points. If the input frequency were
b =n/2 + 6n/T, and if the plot of Fig. 16 with its limited range of 8r
were the only one available, clearly it would be to our advantage to use
the "difference" frequency polnts at w =1b - 2r/T, b - 4v/T, and
b - 6m/T to establish the magnitude and relative phase of the other

three sine waves.
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Consider now the generalization of these observations. Notlce that
the N slue wave components required to match the continuous stzady-state
tlme reponse at the sampling instants and at N — 1 equally spaced inter-
sample polnts need not have frequencies from within one period of the
amplitude ratio plot. However, the frequencles used must each be an
allas separated by (2n/T)Nk (where k 1s an arbitrary integer for each
frequency) from the N alias-related frequencies fallirg 1in any one
period of the frequency resporse. This Is evident in the example for
N =2. If the Input frequency is mw/2, one would ordinarily choose sine
wave components wlth frequencles n/2 and [n/2 + (2n/T)] to represent
the coantinuous steady-state response at the sauwpling iInstants and one
inter-sample point. Alternative cholces of frequencles are n/2 and
[n/2 + (68/T)], and so on. Choices of u/2 and [n/2 + (4n/T)] or
[n/2 + (20/T)] and [n/2 + (61/T)] are not alternatives because these

frequency choices do not satisfy the separation criterion stated above.

This brief discusslon assoclates allases and sub—aliases with the
sum and difference frequencies of modulation theory. It is nct the
case, however, that sum and difference components are necessarily both

present slmultaneously 1n the output. It 1s shown above that only

N components are needed.

The case where N is extremely large is also of interest. Let N + =

after evaluating Eq. 91 at z = 1 mn(I‘/N):

] - e=al/N 1 - 2N

N2 - o=aT/N} 1 - -1
N(z - e”@ /N) 1 - ¢ 2 Liwy (T/N) .

(1= e@™/N)(L -1 wgT)

N1 wg(T/) - ™3 TN][1 =1 < (/0] | 140 (92)

N+oo

= e cap—
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An 1indeterminate form 1s obtained. Therefore, use L”Hapital’s rule
twice [substitute 1 w,(T/X) = cos wa(T/N) + 3 sin w (¥/Nj, ete.] and
obtain (see Appendix I of Ref. 1):

1 1-e=T
+ =
N os(s + D) lz=140,(T/N) lin
Nroo
1 = 3l 1 - esT (93)
= . + A = Y
Jw,T 1 Jwp sT s + 1 s= oy
& ST/N r . \ .
where z = e - That is, as N + =, simply divide GM by T and evaluate

the coefficients at s = Jwg. This 1s representative of the general

result of the next subsection.
E. OPEN-LOOP FREQUENCY RESPONSE: CONTINUOUS OUTPUT
In the previous subsection 1t was shown that

Ap + 3B, = -33 (GM)T/N z & esT/N (94)

=g (T/N) ’

To deduce the behavior for infinite N, revrite Eq. 94 as

‘ ' 1

i% ""‘jﬁ’ ki@ (GM) ( + 3

-
|

j
l

T T/N
= (6M)

=1

1 2nkn\ | (95)
T T )|

The T/N’s cancel, and as N gets very large only the k = 0 =arm coutri-
butes since all "aliased" components of the spectrum have moved to in-

finite frequency. Therefore, -
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lim 1 T/N = M = esT/N
Mo N (OM) 2=1 wg (T/N) T !Sﬂ.mn y z =€ (96)
wn = b+ 2%2 . n = ng, ngtl, «eoy N=ng -1
where
b 2n
s INT

The example of the previous section with N finite can now be studied
for N infinite. This result gives the frequency response for the con-

tiiiwous output.

An * 3Ba = sT s + 1 . o7
8= JWn

A Bode plot for this result is shown in Fig. 17. Componeuts for the
input frequency b = 1.0 rad/sec and its aliases have been indicated with

the sguare symbols.

Interpretation of Fig. 17 1s as follows. Suppose a unit sine wave
at 1 rad/sec 1s Iinput to the sampler. Then, if the amplitude ratios and
phase angles for sine waves with frequencies 1, (1 + 2n/T), {1 + 4x/T),
+ve, are read from Fig. 17, and these components are added together, the
resultant waveform will be an exact matgh of the actual steady-state
output waveform in Fig. 18. One might expectltnis waveform to be very
ncarly sinusoidal, since the first alias is attenuated on the order of
30 dB, relative tc the ioput component. However, the steady-state time
respouse does not bear this out, as can be seen in Fig. 18. The reascn
is that the summation of alias terms 1is sigunificant despite their small
individual size.

Again, in counectlon with Flgs. 17 and 13, cousider a (1 + 4v/T)
rad/sec unit sine wave input to the sampler. The steady-state output
will contain sub-aliases ar 1 rad/sec and (1 + Zn/T) rad/sec; a compo-
nent at the input frequency, {1 + 4n/T) rad/sec; and other aliases at
(1 + én/T), (L 4+ 8u/T), ..., rad/sec. The amplitude ratio and phase

angle for each component is again read from Fig. 17 (at points indicated
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by the square symbols). When these components are added the steady-
state time response is again that in Fig. 18. Thus, the continuous
response spectrum and steady-state time response are the same for a sine
wave input of given frequency as for a sine wave input having a positive

frequency which is an alias of the given frequency.

Anather observation is that the aliases do not represent "harmonic'
components  but rather represent modulation components which must add
topether properly in order to match conditions at the sampiing instants
for the basic perind, T. It can be seen in Fig. 18 that the "steady

state"

does not necessarily imply "periodic." Periodic waveforms occur
only when the input frequency and the sampling frequency have an integer

relationship with respect to one another.

r{ty=sint Gfs) = S—Iﬂ— T=1Isec

8

g

cin 4

2

O /\[, ot A ——— A f

-2 60 \62 64, &6 68 70 72

__4L t{sec)

.6k

T

Figure 18. "Steady-State' Time Response

¥. SINGLE-RATE CLOSED-LOOP FREQUENCY RESPONSE

Closed=loop results arce dependent upon the configuration of the
digital loops. However, the basic analysis procedure 1s independent of
configuration. It is important to understand this procedure, and in
particular the simplifications that occur in analysis of closed-loop

systoms,

Consider the (vector) system shown in Fig. 19. The objective is %o
find the coefficients that characterize the spectral components of the
continuous respanse, C, i.e., the frequency responsc. The procedire for
this cexample is typical. First, solve for the vector component at the

input of the data holds.
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Figure 19, 1Illustrative Vector Closed-Loop Configuration

T = chT - G{GE(GM)TET (98)
Therefore,

BT = [1 + c}“cg(cm)T]’l GTRT (99)
Solve for C(s):

C = (GM[I + G}“GE(GM)T]'1 GTRT (100)

The spectrum of C(s) is of interest. It is determined by first finding

CT/N

the spectrum of and taking the limiting case as N + =,

let the input ke a unit sine wave at frequency b rad/sec and let

z = esT/N (101)
so that
zN gsin bT

rRT = (102)
22N - 2,1 (cos BT) + 1

Using Eqe. 102 and the results of Section II,

cT/N = (em)T/B(1 + G?G%(GM)T]_l cTrT (103)
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Yor the sake of brevity write Eq. 103 as
T/N 2 ~T/MN TRT (
C CA CBR (104)

Expand the right-hand side of Eq. 104 in partial fractions:

Mg
CcT/M o GT/N T z_sin bT _
A B22N - 2,N o5 bT + 1

Apz sin wy(T/N) + Byzl{z = cos wy(T/N)]
z2 - 2z cos wa(T/N) + 1

i
n=0
+ [Terms due to modes of GK/N Gg] (105)

Assume that responses in the modes of GT/N G approach zero as t + ,
i.c., that all closed=-loop system modes are stable. In Eq. 105,
2mn

w = b+_._...

n 7 , no=0,1,2,...,N1 (106)

Notice that Eq. 105 is exactly the same as Eq. 83, except (GM)T/N
has been replaced by GKINGE. Hence a crucial result is cbhtained using
Eq. 89:

; 1 ~T/NgT
Ay + jB, = <= GL/Ng (1073
noon N A UB|z=1gw, (T/N)
But,
cTiz) & cleM) , 7 = ST (108)
because of the local definition of z as e®U/N, Therefore, using
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[14wn(T/N]N = 1gw,T
= cos waT + 3 sin m,T
= cos [b + (2en/T)IT
+ i sin [b + (2mn/T)]T

= cos bT + j sin bT

we obtain

T (=) = Tz (109)
B 1awy (T/N) B z=14bT

Thus, 2 in GE can be replaced with Z provided it is evaluated for Z =
14bT instead of for z = 14wn(T/N). This amounts to a simple (and very

convenient) change of variable. At this point the result 1is:

1

Ap + 3By = 5

GK/N(z)I Teg z = o8T/N

GL(E)
l2=lgw, (T/W) B 7 |Z=140bT
(110)

Equation 110 1is the basic result for the fivite N case. To relterate,
to find the coefficients of the N sine waves matching the T/N sampled

output, C, compute the usual pulsed transfer functions for

T

5 = 8T (111)

Tz + cTeleam T T
GL(Z) [1+ clcTcam™] ™ el .

and evaluate it for

(eH
i

1zbT (112}

Next, compute the usual T/N pulsed transfer function for G, as a func-

tion of z and evaluate it for z = lmwn(T/N) wiere w = b + (2un/T).
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Thus, it is superfluous to consider CE as a function of zN; it suf-
{ices to consider it as a function of Z. Moreover, only GX/N is a func-
tion of N; this simplifies obtalning the limiting case tremendously.

For the case of N + «, the continuous case, we obtain

{
An+jBn = ( T

“_(S_I‘Eﬁffll \( ¢T(2) ) , z2eT  (113)
S:jwn/ | B Z=lde

Equation 113 is the desired result for the given closed-loop config-
uration.* dowever, it 1is the procedure which is key. One can follow

the detalls through for other configurations quite easily.

An illustrative closed-loop frequency response example 1s shown in
Fig. 20.

G. SECTION SUMMARY

The "sampled spectrum" frequency concept of sampled data control
theory 1is concerned with determining the single sinusold that fits the
output of a single-rate system at the sampling instants. In this report
the frequency response concept has been extended to cncompass the con-
tinuous spectrum for the continuous variables of a discretely controlled

system. Moreover. the theory 1y sufficientl]

v N
3 =

cases whercin a group of N sinusoids 1is usea to match the continuous
variables not only at the sample points but at N - 1 equally spaced

inter—-sample polnts as well, N may be finlte or infinite. Infinite N

corresponds to the true continuous spectrum. The practical value of

knowing the true coutinucus spectrum for continuous physical variables

*Accurate numerical determination of Gg(z)lz=1&bT may prove diffi-
cult at high sampling rates. This is the result of small differeaces
between latrge numbers which occur in the computations as poles and zeros
approach the unit circle. 1n this event, one 1is well advised to carry
out equivalent computations in a domaln where numerical conditioning is
much improved (e.g., in terms of w’ or w).
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Figure 20. laguiiude Flot for Closed-Lloop System

is self~evident. For example, this informatlion can be used for evaluat-
ing inter-sample ripple and for guiding continuous filter selection.
Cases wherein N 1s finite also have important practical application as,
for exzample, in the bench validation of the digital controller hardware/
software combination. Digital c¢ontroller characteristics are often
specified in terms of end-to-end "frequency response.” On the bench, 1f
continuous outputs (say from data holds) are sampled at a finite rate (N
is finite), the difference betwecen the measured frequeuncy response and
the true continuous frequency response (N + «) may be significant. The
results of this report can be used to predict, minimize, ovr correct for

the difference between measured and true freguency responses.

Kesults for closed-loop cases depend upon the specific configuration
of the digital loops. However, the basic analysls procedure is indepen—
dent of the loop configuration. The procedure is to obtain the pulsed

transfer function matrix relating the outputs to the data holds and the
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. inputs through which the (sampled) sine wave inputs enter. The continu-
ous system (including data houds) is placed in cascade with the output
of the pulsed system. Frequency vecponse 1Is then evaluated in exactly
the same manner as for any discretely excited open-loop continuous

system,

Corresponding results for two rate suznpled closed-loop systems are
contained in Ref. 1. Extensions for trus mualti-rate sampled closed-loop
systems will be developed in Section IV. In addition, the theory, in

Section IV, 1is extended to provide a tool for quantifying fidelity of

digital simulations of continuous systemns.
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SECTION IV

FREQUENCY RESPONSE OF MULTI-RATE SYSTEMS

A. INTRODUCTIOR

The frequency response of digitally controlled single-rate systems
was discussed in the previous section. The manner in which one treats
two~rate systems is given in Ref. 1. We will omit a review of the two-
rate case and move directly to a discussion of multi-rate/multiple-order
configurations. It will be shown that the basic tools developed in this
section are ideally suited to a variety of situations such as defining a
Bode plot for digitally controlled closed-loop systems, a Bode plot for
the simulation of a closed-loop system, and the Bode plot associated
with a simulation wherein more than one independent processor (e.g.,
nultiple computers or microprocessors) is used to implemeut the computer

code.

B. A BASIC RESULT

Let the general multi-rate/multiple-order open—loop system of Fig.

21 have a sine wave input.

In Fi

8 =~ (cre)P (114)
T/N
cT/N = [G[GIRG)B]/ (115)

where «, B represent sampling schemes with a basic period of T
seconds. For example, o might represent a multiple-order sampling

format; B might represent a multi-rate and/or pseudo measurement format
(Section II).
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R , R c, P c ,cm
G, ——/—t- G }-—--—/-—-»

a B T/N

Figure 21, Multi-Rate/Multiple-Order
Open-Loop System

Using switch decomposition, Fig. 2] takes on ithe representation of

Fie. 22, Clearly,

c§ = Wy (W, G W) T(w R)T (116)
and
cT/N = () T/N (wp, 6 wp)T (Wy,r)T (117)
B T/N
R® C C C
— W, _/T-.... W, ! G, —-—I[WZ* _/T._._. W, G /
— T/N

Fipure 22. Open-Loop System with Switch Decomposition

If « represents multiple-order sampling anu 1 a pseudo measurement

format using multi-rate sampling, the switch decomposition modeling

components might appear as:
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(118)
1
eTos
Wi = Tis (119)
el
eTZS |
and
1 0 0
Wy S Wy = |0 e s¥/3 0 (120)
0 0 e—ZST/3
1 ]
Wy, = | evT/3 (121)
e2sT/3

Comparing Eq. 117 with Eqs. 83 (or Eq. 104), we see that only one new
facet has entered the problem, namely (wl*R)T replaces rY, Consider,

therefore, a generic component of (wl*R)T —~— for instance the scalar
(eBTSRYT, where 0 < A < 1.0.

For R = gin bt and A ze¢ro (EATS - 1), the output equation (Eq. 117)
becomes
\ N sin bT /
ct/N = (Gwy)T/M(w, Gy wy )T z z = ST/N
2 2x-1nl z2N o (2 cos bT)zN + 1 !

(122)

where RT is described in terms of a N/T samples per second model. TFor
the sake of brevity write Eq. 122 as

N gj
cT/N = Cz/N ¢T zN sin bT

(123)

B 22N - (2 cos bIT)zN + 1




Expand the right~hand side of Eq. 123 in partial fractions:

CTIN = gT/NGT zN sin bT
A B Z2N - (2 cos bT)2N + 1

Nil Az sin wy(T/N) + Bpz[z - cos wy(T/N)]
n=0 z2 - [2 cos wn(T/N)]z + 1
+ [Terms due to modes of GX/NGg] (124)
For non-zero 4, we use the advanced z-transform on (eATSR)T and
Eq. 124 becomes
T/N.T 2zN{(sin bAT)zN + sin [b(1l - A)T]
T/N
cHy = G G
A B 22N ~ (2 cos bT)zN + 1
. %if Az s[p wn (T/N) + Bpzlz - cos w,(T/N)]
n=0 22 - [2 cos wp(T/N)]z + 1
+ |Terms due to modes of GX/NGE] (125)

Assume that responses in the modes of GX/NGg approach zero as t *» =,
i.e., that all modes are stable. In Eqs. 124 and 125
2mn

wp = b+ , n=20,1,2,...,N-1 (126)

[More generally, n = ng, ng+l, ..., W¥n -1, where n, = —(b/ws)IN 1. The

steady-state waveform, at the sampling instants, can be written as

T/N

N-1 T/N
lC(t)l z%) (An sin wyt + By cos wnt)] (127)
n=
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To solve for A and By, multiply each side of Egqs. 124 and 125 by
{22 - [2 cos w (T/N)]z + 1} , 0< k< (N1) (128)

and evaluate for z =1 wk(T/N). Since the only terms which can survive
on the right-hand side occur when n = k, the I will, of course, dis-

appear. Then, if we so choose, the k notation can be changed back to n.

Te illustrate,

GT/NgT 2N sin bT
A 2

. 2 f22~ (2 cos w (1/W) ]2+ 1]
z" --(2 cos bT)z +1

’z=1rswk(r/n)

22— [2 cos w (T/N) ]z + ].)

Nil Anz sin wn(T/N) +Bpzliz - cos WH(T/N)]
a0 baetam oy (129)

22— (2 cos wn(T/N) )z + 1

GT/NGT ZNJ (SE" bAT)zN+sin b(1-A)TJi 22— [2 cos wk(T/N)]Z" ])
AB 2 (2 cos b 41 ,z=lﬁwk(T/N)
N-1 Az - cos T
- o> 51“2%(T/N)+an[z cos Ln(1/0)) ‘22“[2 cos mk(T/N)]z+1; (130)
n=0 z"—[2 cos wn(T/N)]z+1 2=140, (T/N)

For any n # k, the right-hand side of Egqs. 129 and 130 are identically

zero since

z2 = [2 cos w (T/M]z +1 = [z ~ cos mk(T/N)]2 + [sin u)k(T/N)]z
(131)

vanishes when

z = Lﬁwk(T/N) = cos wk(T/N) + j sin mk(T/N) (132)




~

Specifically, we obtain

[cos mk(T/N) + j sin mk(T/H) - oS mk(T/N)}2 + [sin u‘k(T/N)]2 = 0
(133)

For n = k, the cancellation of the commen factor guarantees the survival

of an n = k term. Factoring ount a common z gives

z{Ak sin w (T/N) + B [cos w (T/N) - cos w, (T/N) + 3 sin u)k(T/N)]}

= + j i T/N]
(Ak JBk)z sin mk( / )|z=14mk(T/N)

(134)
Therefore, Fgqs. 129 and 130 become
‘ o _ . CK'/NCl(:N sin bT)J‘;:Z- [2 cos L:k(".‘/.\!)]:+]:|
s osin mk(]/N;\/\k+)Bk) = N ' N
27~ (2 cos BTz 41 2= 18w, (T/N) (135)
(:Z/Nng 2 st bAT) 2P 4+ s1n 1 =0T} :zz- {7 cos wk(T/N)]u»lJ’
sin w (T/NY (A, +3B, ) =
k k k ZZN— (2 cos bT) zN +1 lz-ll\wk(T/N)
(136)

All

AL this point, divide through by z sin w, (T/N) and replace k with n:

i, w6 2N gin b 22 (2605 6 (/M) 2 4 1
lz=law (T/N) sin an(l/H) 2N N i
n 2" —(2 cos b)Yz 41
2o 14w, (T/N) (137"
s )
2_17¢ T .
PP - (.T/N‘,’l 2N-1 [(5in bAT)zN'G sin bll—8)T A (‘“n(l/m]'“’l
T PSR T Y sin uy (T/N) M2 cos L
n
(138)

R
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The last term on the right-hand side of Egqs. 137 and 138 is indetermin-
ate (0/0) when z = 14wn(T/N). Therefore, applying L'HGpita]'s rule
first to Eq. 137 (A = O case),

N-1 gin oT 2z ~ 2 cos w,(T/N)
A, + jB, = ¢T/NgT 2~ S.3.V o
n * JBp A 7B sin wy(T/N)  oN[22N~1 - (cos bT)zN1) 2=14u (T/N)
(139)
- GT/NGT zN-1 gin bT 2[z - cos wn(T/N?] (140)
A B sin “‘n(Tm) ZNZN—I(ZN - ¢cos bT) z=lz$wn(T/N)

Ap + jB, = cT/NGT
n s A Blz=] wy (T/N)

sin bT[cos wy(T/N) + j sin wy(T/N) - cos wy(T/N)]

[sin wy (T/N) I} (140, (T/M)]N = cos bBT)} (141)
Ao+ = gT/NgT
0t 3B B g (1)

(sin 0T)[]J sin wy(T/N)] (142)

x (sin wn(T/N)]N{[(lAMn(T/N)]N -~ cos bT}

but,

[1gw, (T/N)IN = cos bT 1w, T - cos bT

= cos wnT + j sin wyT - cov BT
= cos [b+(2wn/T)]T + j sin [b+(2vn/2)]T - cos bT

= cos bT + j sin bT - cos bT

j sin bT
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Therefore,

. 1 ~T/NgT
A + B = =~ G 0 143
n I*n N A B z=14wn(T/N) ( )
Next,

cﬁ(z) = cg(zN) , z = osT (144)

because of the local definition z = eS‘/N. Therefore,

]

¢TM! 6T Lguy (/MY

|2=14w,(T/N)

i - ¢T
GL(1g,T) GT(14bT) (145)

That is, take the "T'* z-transform of GE, and evaluate at z = l4&bT.

The finite N result for Eq. 137 (A = 0) is then

GT/N Z geST/N N
A T z2esT

G (146)
z=14w, (T/N) Blz=14bT

Ap + 3Bn -—r

As N + =, the covefficients of the continuous spectrum are glven by

1 I ™ z:eST
i E G+ ] 4
Ag ¥ 3Bn T LA 5= jwn VB|z=14bT (147)

The supeiscript notation in Egs. 146 and 147 is for the purpose of

calling out the definition of z belng used in the evaluation.

We next treat the indeterminate part of Eq. 138 (the & # 0 case).

Arplying L'Hopital’s rule co the last term on the right-hand side of

Eq. 138 resultes in
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. N-1 N :
~ T/NgT Z {(sin bAT)zN + sin [b{l ~ AT}
Ag t 3Bn CA CB sin w,(T/N)

2{z = cos wp(T/M)]

(148)
N-17,N _ s hT _
2Nz [ cos hT] z=14w, (T/N)
Fvaluating Eq. 148 at z = ldu)n(T/N) produces
A +iB, = c};/Ncg
z=1 %, (T/N) (149)
f . !
. Lsin bAT(cos wyT+4 sin wyT) +sin b1 ~A)T|leos w(T/N) +j sin w,(T/N) ~ cos w, (T/N) |

[sin o, (T/N) I8[cos w,T+ j sin w,T~cos bT)

Simplifying Eq. 149 gives

3B GT/NL.Tl {sin bAT) (roa @,y + st B ~ AT & 3 (shu w) (sin bit)
dptiBy = Gyu ) LA
A B|z=113mn(‘1‘/[\') N sin bT
T/N,T] sin bT cos bAT+j sin w,T sin bAT
= G G .
4 - m
4 Blz=1é.mn('r/n) N sin b
. GI/N Ti . cos LAT+] sin bAT
I z=14u, (T/N) N
. T/N.T
- N aver GG s (150)
B g = .
Sl PEETNC VN S ey (/8 |se10

Thus, the only new element added is the factor ePT evaluated at the

input frequency. Since & 1is peneric, we draw the same conclusion for

every other element of (WI*R)T and heonce combining Egse 146 and 150
glves

U




(G, )T/N z2esT/N 28eST

Ap + B = Wo.G W) T] W )
n T Jn N 2=1fw, (T/N) ( 2% 1 1] z=14w,T l*lS=Jb (151)

2= 1Y bT
wy, = b +20 , n o= 0,1,.0.,N-1 (152)
As in Eg. 146, letting N + o« gives the "continuous" result

GWo (W )T z2esT .
A, 4+ B, = —= G| W -
" n T s= 3wy 257171 z=14bt L s=jb (153)
or {z=lfw,T

In Egqs. 151 and 153 it is important to observe that an option exists
with regard to (WZ*GLWI)T; it may be evaluated at either 14bT or
ifw,T. However, ihere is uv option with regard €0 Wl* since 1t must be
evaluated at s = jb. Clearly, the most efficient procedure is to
evaluate (wz*clwl)T at z = 14bT and wl* at s = jb, save the result in a
polar format, and then evaluate (GWZ/N)T/N (or GWZ/T) over the appro-

priate range of n.

It can be appreciated that the results of Section III are contained
in Eqs. 151 and 153, since Section IIl considers only the special case
of W, = 1.0 (a scalar). Also, note that W; and W, are symbolic
represZnLations that can represent either multi-rdate or multiple-order
sampling formats (e.g., 1t is permissible for Wy = &, etc. ). However,
in arriving at the spectrum of the continuous variable, unjiformly spaced

time samples, in a T/N time frame, were uced.
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C. A CLOSED-LOCP APPLICATION

The ability to cast any wmulti-rate or multip

le~order sampling se-

quence into a switch decomposition format makes the analysis of closed-

loop systems a stralghtforward task. Consider the

system of Fig. 23.

Proceed as in the single-rate case. Since C = lelET, one must first

solve for EL;

ET = (), R)T = (W1,GoW)T(W2,01wp)T KT (154)
or
ET = [1+ (W) T(Wa, 0wy )T] 7 (wy,R)T (155)
R el C
= O W LN 7 L (G — Wn--b«/«—«!- W, J—
7 ik i i xR 2
- T T
Gz
Figure 23, Closed-Loop System with Switch Decomposition
Therefore
. p— .
CI/N = (epu)T/N[T + (Wp,Gap )T (W, 6wy ) T[T (Wp,R)T (156)
The coefficients for the steady-state waveform are then
GV ) ~1|z8esT
Ay + 3B, = =—— I+ (W, GoWo )T (W, 63w )T W
n n T 8= jug [ ( L2 2) ( 2%°1 1) ] Z=14bT 1% s=3b
or z=ljgwnT
(157)
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i The following numerical example will help clarify the specific
details of Eq. 157. (An alternate solution based or the '"two-rate"
theory of Ref. |l {s contalned in Appendix A.) Consider the system cf
Fig. 24.

| With reference to Eq. 157, Wy =W = [1, ¢73T/?] and w, = 1.0, The

T/N output equation for Fig. 24 is

CT/N = (G mpw) T/N T (158) i
i
where
ET = [1+ (w*GzM)T(GlMZW)T]—l(W*R)T (159)
Then
p cT/N = (GyMpw) /N[ + (w*czn)T(01MZW)T]'l(w*R)T (160) 1

The steady~state coefficients for Eq. 160 are given by

‘ G M)W T rq-1]2%esT
My S | [I + (WG TG M) T] polabT *|s=sn (161)
n 2 R w0

or z=lgw,T

b
p C_./ -—CTF =
T =
i _
]
i
! c c’
| i
T
!
Figure 24. Closed-Loop Numerical Example :
i ";
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where

wn = b+—21r_l

T ’ n=20,1,2,...,N-1

(162)

The inverse expression in Fq. 161 is formed using the following

steps (z = e5T):

[ ______ 1 - q:T ______
opmT = | [|-===] Loe=TIT Lo -2y, ¢ (e W2 - oo
*2 esT/2| s(s + 1)} 2 - o-T
(163)
where
T
1 - e ST 2 -1 |1 1 |T
[s(s + TT] - z [g s + 1] (164)
and
[osT/2(¢1 - o=sTy|T s =1 lesT/2  sT/2]1T L6
l s(s + 1) J B z s s +1 (165)
with
oOTs |T oz A Ts T _ze™AT (166)
s z -1 ? s + a z - eaT
Applying the advanced z-transform relationships in Eq. 166 to Egqs. 164
and 165 gi es Eq. 163. Next,
- o~sT/2 , “T/2  o=T i 1 — o=T/2
(GIMZW)T = ls(se+ D [l . e_ST/Z]}T E ._(; ' L = =T
zZ - e Pz - e
(167)
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where

1 = emsT/2]0  [(1 - emsT/2) (-1 + e-sT/2) "

FICEEE } - : e (168)
|
%

and
g emsT/2() - =sT/2)|T eST/2( ] ~ ¢=sT/2) N e=sT/2(~1 + ¢=sT/2)"
s{s + 1) - s s + 1
(169)

Placing Fqs. 168 and 169 in an advanced z-transform format produces

(1 - E—ST/Z) . (_1 + e-ST/ZJ:'T

-1 -e8T/2 N esT/21 T
s s + 1

s s + 1]

(170)
| eST/2(1 - 78T/2) | o=8T/2() 4 ~sT/2) T [ sz
’ { s s +1 =2 s s
|
~sT/2 1 1T

(171)

Equation 166 can now be applied directly to Eqs. 170 and 171, resulting
in Eq. 167. Now, assume T = -1n(.81l), which gives a set of convenient

numbers when FEgs. 163 and 167 are evaluated. The result is
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.0092 + .0081 1 .01z + .009_ (172)
(z ~ .81)2

and

|
.009z+.0081 22-1.612+. 6651
I+ (W,GoMT(cMu)T = | ' ,
(. 621) (e 10) z2 - 1.622 + .6561

(173)

where

————— o (174)
i 0 | (z - 81)2]

Taking the inverse of Eq. 173 produces

22-1.61z+.6651 ! -.019
________ _1—\——-—--———-.
- - 2. .
[I + (W*GzM)T[GlMQW]T] I 1=(.009z+.0081) 1 2°-146224+.6732

z2 - 1.61z + .6822

D(z) - (175)
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Substituting Eq. 175 into Eq. 161 gives

=
—
—
N
~r
=]
N
—~
N
~—r
o~

. ] - e7sT/2 -
An+JBn = ml—)[l ! CST/Z]

2=14bT |4 3jbT/2

(176)

Performing the matrix operations reduces Eq. 176 to Eq. 177.

l=a=ST/2 Nj(z)+Ng(2)eIPT/24N3(2)e ST/ 24N, (z)e ST/ 2¢ IDT/2

AptiB, =

Ts(s+1) D(z) 8= jug
and z=14bT
(177)
where
oy = b+ER 0 =0,1,2,...,8] (178)

In Eq. 177, Nl(z), Nz(z), N3(z), NA(z), N5(z), and D(z) are evaluated at

14w, T = 14bT and the remaining terms at s = jw

n

In this two-rate, closed-loop example where the input sampling
i1terval is one-half (T/2) the output sampling interval (T), two
separate sets of Bode plots are required to present the magnitude factor
and phase shift information for the entire frequency spectrum. That is,
the fundamental and alias componenis are stlll direcily read from
individual magnitude and phase plots, but now two separate magnitude
plots and two separate phase plots exist. One set of Bode plots (i.e.,
magnitude plot and its accompanying phase plot) is valid for a specific
range of input excitation frequencies (r =1 sin bt) and the second set
for an alternate range. In this example, these two frequency ranges are

given by

Kug € b € (K+ 1lug (179)
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where w, = 2t/T and one set of Bode plots is applicable for even K’'s (0,
2, 4, 6, etc.) and the other for odd K's (1, 3, 5, 7, etc.). Therefore,

the first set of Bode plots is valid for

dug € b < Sug (180)

and the second set 1s used for input excitation frequencies which fall

in the following ranges

Jwg € b < bug

Swg < b € bug (181)

It is seen that the ranges covered by the two sets of Bode plots
alternate along the frequency axis.

magnitude plot for Rq. 177 is shown in Fig. 25. The
solid curve represents one magnitude plot and the dotted curve the
second. As pointed out, these curves are valid for the input excitationm
frequencies defined by Eqs. 180 and 18l. Sample printouts are shown in
Table 4 for Eq. 177 evaluated at b = 1, 40, and 80 rad/sec. The format
of the printout 4is magnitude (dB), phase angle (deg), wy, = b+ n/T
(rad), and an index number to indicate the aliased component. Figure 25
was generated by evaluating Eq. 177 for a large number of input frequen-

cies, leading to the appearance of a multi-valued Bode plot. However, a

careful check of the spectral components 1isted in Table 4 will show
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TABLE 4. DATA FOR COMPOSLTE MAGNITUDE PLOT (FIGURE 25)

b=1 b = 40 b = 80

Magnitude (dB) -3.300 -39.849 ~51.897
Phase (deg) -19.924 ~209.290 =150.751
Frequency (rad/sec) 1.000 40.000 50.000
Spectral Component Index 0.000 0.000 0.000
-88.518 -99.387 =107.245

-117.241 60.648 -428.657

30.818 69.818 109.818

1.000 1.000 1.000

~71.690 =-55.701 -61.372

-63.879 -210.147 -151.057

-60.635 99.635 139.635

2.000 2.000 2.000

-107.219 -116.112 -114.780

~118.466 60.270 -428.840

90.453 129.453 169.453

3.000 3.000 3.000

-83.587 63.850 ~-67.550

-64,348 -2:0.362 -151.180

120.270 159.270 199.270

4,000 4.000 4,000

~-116.016 -116.694 -120.C18

-119.718 60.130 -428.928

150.088 189.088 229.088

5.000 5.000 5.000

-90.582 -69.374 -72.098

-64.506 -210.460 -151.246

179.905 218.905 258.905

6.000 6.000 6.000

that the varicus aliased components will alternate between the top and
bottomn curves, or they wiil remain totally on the solid curve or totally
on the dotted curve. To 1llustrate this, the fundameuntal and aliased
components are highlighted with a star symbol in Fig. 25 for an iuput
frequency of b = 1.0. The two magnitude plots in Fig. 25 are shown
separately in Figs. 26 and 27 to further emphasize that two completely
independent magnitude plots exist, each valid for different ranges of

input frequencies.

This multiplicity in Bode plots is directly associated with the

(w*R)T term in Eq. 160 and exists for any general closed-loop system
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with high-input/slow-output sampling. For other general wmulti-rate/

multiple order systems, a single magnitude and phase plot covers the
entire frequency spectrum. It should be emphasized that the (W*R)T Torm
alone does not guarantee mnultiple Bode plots. In many oper-loop and
closed-loop systems the (W*R)T term appears and only a single set of
Bode pluts is required (e.g., Case IV example in Subsection D). Thus,
the multiplicity in DBode ploLs is directly tied to closed~loop systems
with high-input/slow-output sampling. For these systems, the properties

of the multiple Bode plots are then determined by the (w*R)T term.

In Eq. 161 (or Kg. 177), those terme that are evaluated at z = lbmnT

and s = jw,  are inher2ntly generic with respect to the input frequency.

n
For example, given a sampling freauency of by = 21/T = 10.0 rad/sec and
an input frequency of b = 1,0 rad/sec, these terms contribute to the

following fundamental and aliascd comporents:

Fundamental: 1.0 rad/sec
lst Allas: 11.0 rad/sec
2nd Alias: 21.0 rad/sec
3rd Alias: 31.0 rad/sec

nth Alias: b 4+ 2nn/T rad/scc

Now, for b = 11.0 rad/scc, contributions to the following frcquency

components are obtained:

Fundamental: 11.0 rad/sec

lst Alias: 21.0 rad/swvc

2nd Alias: 31.0 rad/sce

3rd Alias: 41.0 rad/scc

nth Allas: L 4+ 2wn/7 rad/sec
74
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. is seen that the contributions to the lst, 2ad, 3rd, etc.. aliased
component for h = 1.0 rad/sec¢ ideatically match the cowtribuations to the
tundamental and 1st, 2nd, 3rd, ete., allased component for h = 11.0. We
could then replace wy = b + 2wn/T with simply w, = b to obtain the fua-
dameatal and aliased components for the Bode plot if it were not for the
(N*R)T term in FEq. 160- Indeed, & single set of generic Bode plots can
be constructed for any general wulti-rate/multiple-order olosed-loop

system ¢xeept teose employing fast—input/slow-output sampling.

The (W*R)T teri, unlike the remaining terms in Egq. 160, must be
evaluated at s = jbh (and not g = jmn). Therefore, this frequency re-
sponse term 1g¢ solely a function of the input frequency b aad not a
function of the input plus aiiased comprnent.  The multiple Bode plots
are a conscequence of this singular dependence on the input frequency b
o 10T/2

and tre resutting cyclic or periodic nature of the elcement in

= (182)

For this example, this periodicity s at the Joput sampling frequency
L2/ (T/2) = 2w,] since

L‘j‘)'l‘/zh . cus 47 + 3 sin 2 (183)

2a/(1/)

and the contribution from the (W R Lerm then repeats ftsell for input
"

trequencies eguerl to
o= sun/(l/2) no= 1,2,%, ... (184)

This cyclic behavior shows up directly In the composite mapgnitude plot

fn Flyg. 29 where the tandamental freguency ranpe covered Ly the combi-

nation of both Bode plots eguals the fuput sampling treguency, 2o 2=
5

59.0351 rad/sec. However, each Fode plot contalns aliased components
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which are a functicn of the output and not the iaput sampling frequency
(Lt.es, L+ 2u/T, b + 4u/T, b+ 61/T, etc.).

D. GERERLEL RLSUING

Some general c.. uslons can be formed by extending the two-rate
vector switch decoaposition example frcam the previous subsection. The
final expression (Eq. 1Al1) for the spectral coefficients 1is repealed

below for easy refer=znce.

L,8T
o GMgW - S R ;
Ap * 3By = T [I + (W*GZMJL(GIMZWJTJ z= 1w, T Wy s=jb (185)

or z=]gbT

ls= juy

Vector switch decumposition modeling for a different input sanpling
intecrval only requires alterations to the W and W* vectors. This change
does not dlsturb thore terms evaluated at 8 = jw, and z = Hw T. It 1is
known that the H* term evaluated at s = jb dictates the structure of the
frequency response spectrum aad the Bode diagrams. As was shown, for aa
input sampling frequency that 1is twice the output sampling frequency,
two separate scts of Bode plots are required as a result of the eij/2

element in the W, term. If this 1s extended to an input sampling

s=1ib
interval of T/3, the W* vector will contaln the toliowling elementws:

1 1
W, o= | esl/3 (186)
o8T2/3
Bo*h eij/j and chT2/3 elements now appear In the spectral coefficient
expressinon. The I01/3 factor 1s periodic in b = 2rn/(1/3) and Ib12/3
in b = 2tn/{2T/3). this perlodlcity regults ip not twe but three sepa-
rate scts ol Bode plcts to cover the eotire frequency response spec~

trum. Again, as 1in the /2 case, all alias components will be directly

related to maltiples of the output sawpling frequency, we = /T (Loes,
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b+ 2n/T, b+ 4r/T, b + 6n/T, etc.). The individual range of input

frequencies that are applicable to these three sets of PEede plots is

glven hy:

occurs at the input campling frequency, 3w_.

B e ——

(Kug <« b < (k + Dug

(k + lug € b < (k + 3/2)y4 (187)

(e ¢ 2/2wg € b € (k + 3)wg

wg = /T R k =0,2,6,9,etc.

The fundamental frequency range covered by all three Bode plcts again

s

Further extensions of this example provide the following general

conclusions for fast-input/slow-output sampled closed~loop systems:

5 The number of separate sets of Bode vlots re-
guired to display the entire frequency spectrum
is equal tc the rumber of elements in the W | |
switch dncomposition modeling vector. * s=Jb

o The frequ2ncy range that is applicable to each
Bode plet is determined by the perilodicity of the
w*|s=jb elements.

o The alias c¢omponents in all Bode plots are a
direct fuartion of the c¢itput sampling frequency,

we = 20/7 (Leeey, b+ wg, b+ 2w, b+ 3ug, etce)e

The fundamental f{requency tange covered by the
combination of Bede plots is equal to the input
sampiing frequency.

]

In addition to these general conclusious, the fast-input/slow-output
sairpling schemr glves rise to unew frequency response identities. These
new identities, along with those preseanted {n Ret. 1, allow the frequen-
cy response expressior (Au + jBn) to be written directly from laspection
of each rerm 1u the CT/N ouvtput equation. Any general multi-rate/
multiple-order samnliug architecture can be bandled with this complete

set of identitics. This includes vector switch decomposition modeling

77

B . ¥ LT Y U VR

W B AE R e e e AR e sd——. }. .

Tl

e -




of multi-rate/multiple-order systems, computational delays, and nonsyn-—
chronous sampling.

For the two-rate example in the previous subsection (Fig. 24), the
-\‘ - s . J
cT/N output equation using multi-rate theory (Eq. A-6), and the CT/A

equation using vector switch decomposition modeling (Fq. 160) follows:

CT/N = () T/N RT/2 = (G1p)T/N (o) T/2
. -1 .
< {1+ (o) (oo 72) T} (oppr2) e
cT/V = (e mw)T/N[1 + (w*GZM)T(Glnzw)T]_I (w,r)T (189)

In the ¢I/N equation arrived at using multi-rate theory (Kq. 188), the
first term on the right-hand side introduces spectral cowmponents at
w, =b+ 2an/(T/2), n =1, 2, ..., and the second term introduces spec—
tral components at w = b + 2nk/T, k=0, 1, 2, .... 'The unique factor
in this expression is (GIHZRT/Z)T which corresponds to the (N*R)T factor

CT/N

in the cquation based on vector switch decomposicion modeling (Eq.

189). These two factors directly determine the multiple Bode plet

structure. The new frequency response identities for these two factors
are
L8 ST/M
. s z=0S
(cmpr™/2)T o (G RT/M)T e 7 () (190)
z=14bT/M

(191)

All the remaining terms and factors in the CT/N equation cau be

handled by the following identities from Ref. 1.

78

R L PR it

e . T




ey

AR e AT} et e E—

Finite N

A o/
, ‘ z208T/N
(Gr) T/N A_ur% (oM T/ N

z=14w, (T/N)

a.sT
Z=¢
ST -T
G el 8
A A(z)

z=14bT

. I ST/Nk
Gl‘/Mk **"GT/Mk(z z=e
K K z=14w, (T/M )
2,sT/N l 2 5T
o Z=e z=e
Ap + iB, = ‘ L (o0 lGT(z)
m z=14w, (T/N)| | A" [2=14bT

x

k
I Gg/rk(z)

ZQQST/MK ]

z=14u, (T )

N o+ o

(o) T/ -»—% «nn(s)i

5= ju,
A -
. - Zzesrl
“1 —- CI(Z)‘
A R PRI
sT/1
T/ T/M PR 3
B L YD
k k

Z=14mn(T/Mk)

N ]("I‘( NEESAE
A Iy = T (GM)(s) o= jio, w7 pe L4
| X T/M chsT/Hk
x {1 Gk 'k(z) ]

fz=14u,(T/M))

- EEAET e

(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)
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T
n = ny,ng+t1l, .o 0,1,2 ..., Nomn, -1
o = ~(b/wg)pyp

The notation used in these identitles indicates the definition of
"T" to be used In calculating each z-transform expression and the subse-~
quent evaluation performed to cralculate coefficients for the fundamental

and alias terms in the output waveform (A  + jB ). That is:

. Take the T/N z-transform of (GM) and evaluate at

z = lgw (T/N).

L] Take the T z-~transform of GA and evaluate at
z = 14bhT.

L] Take the T/Hk z~transform of each G, term and
evaluate at z = 14mn(T/Mk).

For the (GM) term, calculate the normal z~transform expression and

replace each "T" in this expression with "T/N." Follow the same proce-

dure for G, and G, with "T" replaced with "T/M ' in the resulting
z-transform cxpression for the Gk terms. With (GM), GA, and Gk in
z-transform form, each term is then individually evaluated at the appro-

priate value of "z" as indicated by the notation.

Example
(200}
CT/100 » (awT/100 6T GT/10 GJ/20 GT/50 ¢T
; 178,8T/100 88T 2205T/10
AntiBy = g (N T/100(z; cT(z) ¢T/10(z)
z=14wn (T/100) © z=14bT z=1qwn(T/10)
y8a8T/20 “ 22eST/ 50
” GTéZQ(Z) Gg/bo(l)
z=1gw, (T/20) z=14w, (T/50)
(201)
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wy, = b+ (2wn/T)
n = ng, ng-l, «so, 0, 1, 2, s4s, N-n,-1 ‘
n, = -[b/ms)

S
|
LNT .

It is apparent that once the cT/N expression has been determined for
the system, simple substitution produces the exact freguency response
expression for either the finite N case or the limitiug case of N + o,
Using this expression, the coefficients (An + 58,) for the fundamental !
and its aliases present 1in the output waveform can then be determined.

A summary of the steps required follows:

# Ootain the ct/N output equation wusing block _—
diagram/signal flow algebra.

L Apply the identities outlined in this subsection

!
to each rerm in ¢ to obtain the frequency !
response expression A_ + jB . i

p p A, + 3B, )
o Calculate the individusl g-trausiorms using the {

appropriate definition of z.

Evaluate each term In the A+ jB  expression at y
appropriate values of z and s.

1
E. APPLICATION TGO SIMULATION ERROR ANALYSIS ' |

.- {
There is a natural extension of the previcus results winich makes the

switch decomposition/frequency response techalgque ideal for the errvor

analysis of simulations (either simulatlons of continuous systems or the

eyt

simulation of continuous plants under the influence of dircct digital

P

|

i control}. <{ne wmay obtain a clearer understanding of this statement by
’ considering tae four diagrams of Figz. Z8.

!

|

1

]

The situation described by Case I in Fig. 28 assumes a controlled

element (1/32) under the influence of a continuous feedback controlier
wlth aun (idealizzd) coupensation network 2(s + 1) in the fcrward path.

Case 1iI deplcts the same controlled elemeni under the influence of a

discrete feedback countroller which smooths the output of the digital ;
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computer with a ZOU (passiug on a "staircased" signal to the control
point). The discretized version of 2(s + 1) was computed, using the
first back difference algorithm resulting in the wodel (422 -~ 40)/z (at
a sampling rate of 20 Hz).

Case ILl depicts a simulation of Case II (or I) wherein the plant,

" rule (Tustin transfor.a).

1/32, is modeled using a "substitution-for-s
The output variable € 1is modeled as the output of a storage register

(ZOH).

Finally, Case IV depicts a common situation wherein one part of a
simulation is coded for one computer while another part is coded on a
sccond computer. Typically, the computers are working in slightly dif-
ferent frametimes and therefore will, on occasion, pass "old data" back
and forth, In this example it 1s assumed that the compensation is
modeled in a 0.15 sec time frame, while the plant 1s modeled in a 0,075
sec time frame. Data transfer between the two computers is via appro-
priate buffer registers, modeled as a ZOH in a T/3 time frame (M3) and a

ZOH in a T/2 time ftrame (Mz).

This completes the problem description; we may now write the appro=-

priate equations for each case and discuss the analytical difficulties.

Case 1 is straightforward since
c(s) = [1+6)6]71 ¢ 1GyR (202)

Case II appears straightforward but does present a contradiction in the

output equaticn

cl = |1+ (GIM)T cg]'l(cln)T GIRT (203)
That is,
. — o—sT T 2
(61T = ll R g R (204)
s 52 2 (z - 1)2
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is readily computed using a transform table, However, it was not the

intent of the designer, who used a substitution technique to model
2(s + 1) as (42z = 40)/z, to compute l

cg = [2(6 + 1)]T (205)

using the z~transform, Indeed, what does [s]T mean? Clearly, the

intent was to assign Gg = (42z - 40)/z, which 1is legitiwate if one

interprets 27! as a delay operator.

This difficulty surfaces again in Case III since

T = [1+¢Idl]™ cTeIxT (206)

172
after taking due note that ML = 1.

Now it 1s w:icessary to interpret both G? and Gg as given functions

of « vather than z-transform operations. For example, assign {via the
Tustin transfoerm)

T2 (z + 1)2 .
T = 12 Lzt D° (207)
1 4 (z - 1)2
rather than (via the z-transform)
i T Tz
¢l = - = — = (208)
AT

Difficulties in the "asslgnment"

procedure also surface when we
write the output equation for Case IV (see Fig. 29).
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Figure 29. Case IV, Switch Decomposition Model
C o= (MW )[I + (W, GyWy)T(Wy M3Wa)T(W3,GoW)T(W3,MoW,)T]™
x (WG W) T(WouaW3) T(Wa,GoW3)T(W3,R)T  (209)
where

W, = |1, e—sT/Z] \ Wy = [1, e=ST/3, e—sT2/3] (210)

The meaning of some terms in Eq. 209 are clear; others are not. For

example, a straightforward computation yields (see Appendix B)

(UgMpwi)T = f1 0 s (WpMawg)T = (211)

However, the mmeaning of (W3*CZW3)T or (wz*clwz)T is not clear. When the
desigoer specified G, = (42z - 40)/z, he intended (for a T time frame)

the vecurgsion relationship

X2(n) 42(Ry = Cp) = 40(Rpm] = Cp=p) (212)
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In a like manner, the Tustin gsubstitution for l/s2 was meant to yield

2
X4(n) = 2%4(m = 1) = X4(n = 2) + %E [X3(n) + 2X3(n = 1) + X3(0 = 2)]
(213)

Clearly, the information available 3n Case IV is

35/3 = 32E.§~ﬁ9 , T/3 = 0.05 , 2z = o8T/3 (214)
and
., 2 2
eT/2 o 2 (zH L T/2 = 0,075 , 2z = esT/2 (215)
1 16 (z - 1)2

Using only the given computer code, how does one compute (w3*czw3)T and
(WQ*GLWZ)T? This problem is treated in the next subsection. In order
to complete the analysis of the present problem, the reader 1is asked to
temporarily accept the assigomenis

42 0 ~40/z
(W3, 6owT = J-40 42 0 , z = efT (216)
0 -40 42
and
rTZ e 5
TE'(ZL + bz + 1) (T</4)(z + 1)/z
72 T2
£Z z{z + 1) {6,(22 + 6z + 1)
(W G wp)T = - (217)
2x7192 (z - 1)2

With these assignments, all terms in Eq. 209 are defined and the Bode

plots descriptive of Cases I-1V can be computed. The results (wmagnitude

plote only) are shown in Figs. 30 through 35.
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Inspection cr Fig. 30 discloses no surprises. The digitaily con-
trolled system 1s a reasonably faithful reproduction of the analog
system until the folding frequency (approximately equal to 62.8 rad/sec)
is passed. Notice that in the discretely controlled system, minimum
response points in the Bode plot (notcihes) occur at wmultiples of sam—

pling frequency (approximately equal to 125.66 rad/sec).

The comparison of the single-rate simulation against the baseline
design exhibits fidelitv over a shorter low-frequency range (Fig. 31).
Of particular importance 1s that the aliased bands exhibit & much higher
amplitude response than did the aliased bands of the digitally con-
trolled system (Case 11). Moreover, the '"notches" now occar at multi-
ples of the folding frequency rather than the sampling frequency. 1n
addition, there are very sharp notches which occur close to odd multi-
ples of the folding frequency; these are a consequence of the zeros of
the Tustin transform introduced by (z + 1)2. A direct comparison be-

tween Cases II and III is given in Fig. 32.

Figure 33 compares the two independent processor case {(Case 1IV)
against the continuous baseline design. Large, sharp resonant peaks
have been introduced in the aliased bands and, 1in addition, there is a
significant overshoot in the first fold. A comparison between the two
rate simulation (Case IV) and the digitally controlled continuous system
(Case 11) is given in Fig. 34. Figure 35 (a very 'busy" figure) com-

pares all the cases,

There are significant differences in the spectral content of the
four cases which would be hidden if one only looked at the sampled spec—
trum (that 1is, looked only at the frequency content from zero to the
first folding frequency). Even in the first fold, there is a signifi-
cait difference in the Bode plot of the continuous case and the two-rate
simulation; the reason for the added overshoot in the two-rate simula-
tion will be discussed in the next subsectiou. After this, we return ta
the theoretical issue of computing such terms as (k3*GZW3)T when only a
G¥/3 assigament in z has been given (or, equivalently, the rtecursion

cquation is gilven).
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F. AN IMPORTANT ALGORTITHM

Of fundamental concern is the cvaluation of terms such as (W Gw)T

*
when G is specified only in terms of softwarc statements (i.e., given as
a function of z). As a first step, consider how one might evaluate the

system of Fig. 36. As indicated, it is permissible to insert

R, c ,c™ g 1 , ¢cT/M
— G —— — ——
T/N /M T/N T/MN  T/M

Figure 36, A Phantom Sampler Formulation of a
T/N, T/M Sampling Format

a phantom sampler between G and the T/M sampler since T/MN and T/M are

integerly related. Thus,

cT/M = [GRT/N)T/M o [oT/mN gr/NyT/M (218)

L

M and N are integers.
To compute the entries of Eq. 218 one may:

1) Compute R by table lookup.
2) Replace T by T/N.
3) Replace z (in R) with zM.
4) Compute G by table lookup.
5) Replace T with T/MN.
6) 2z remains the same (in G).

7) Compute CT/M using Eq. 219.

T/M - _L1_ My _2 _ dp
c wy Jo e M Ey T (219)

Equation 219 is mechanized in a digital computer program (TXCONV) which

is discussed in Volume II.
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For cxample, let

z = osT/6 s M = 3 . N = 2 (220)
1 , z
G = R YA (221)
s + 2 -T/3
e
3
- 1 T/2 = 2
R —T , R -————7——23 —ST77 (222)
so that
1 4 d
cT/3 « : f p ap
21 [p _ e'T/3)(p3 - -T/Z)(z _ PZ) P

3
= ————— E Z .’
] Jr(p_e-T]3)(p-e-T/s)(p2+e—T/op+e—2T/6)(z_pz)

dp

= resl + res + res
p=e

-T/3 ' ‘p=e-I/6

p=—(e 176y /2435e"T/6(/3/2)

+ res _ _ (223)
|p=—(e-T/°/Z)-je-T/6(«%/2)

Thus, there are four residues to evaluate. Relegating the numerical
details to Appendix C, we proceed directly to the final result,
z2(224.8—5'1‘/6)

CT/3 = - = ST/3 {
‘ [z-e'zT/3J(z—e‘r/3)[22+e'T/32+e‘2T/3) ’ ‘ ¢ (224)

and observe that the T/2, T/3 sampling format has produced additional

lightly damped modes in the output response. The reality of the addi-

tional modes can be better appreciated by first plotting the continuous
variable C(t) and then picking off the T/3 sample points. This is done
in Fig. 37. Joining the sample points with a smooth curve emphasizes
the lightly damped nature of the response. This effect was also present

in the two-rate simulation analysis of the previous subsection (recall

the additional "overshoot' in the first fold of Fig. 33).
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G. COMPUTATION OF (W cw)T, ¢T/N GIvER
*

With the aid of Fq. 218, we are in a position to evaluate confipura-
tions such as thosce of Fig. 38 (the vector switch decomposition equiva~

lent is shown in Fig. 39).

li—//-a—- G —a! M ___//__,.J G ——u//——-—J M mSLh—
/3 v s sl e e
) I_e—sT/B 1 e--sT/Z
Mg S v MFTE

Figure 38. Example Two-Rate Open-Loop System

R C
ST O P SR St = S0 SN Mo o A T Sy

_ -aT/3 -2/3Ts - -31/2
W3~\lle le I.W2~‘I,e ‘

Figure 39. Switch Decompositivn Formulation for Fig. 38

From Fig. 39,
C o= MpWy(Wp, 0w )T (Wa,M3W3)T(ws,0w3)T (W3, R)T (225)

As noted previously, the evaluation of terms such 1s (wz*h3V3)T is
routine (Appendix B); our concern is with terms like (W3*G1w3)T when
GT/3 is given as a software specification (e.g., computer algorithm).

Focusing on (w3*le3)T, we find
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(l\l:}*("l\"g]'r = eST/F‘} C“[l o—sT/3 C—ZST/3]
028T/3
- a7
1 e=sT/3  ,~28T/3
= <Gy | esT/3 1 e™sT/3 (226)
02sT/3 esT/3 1
L _
—— T
— "~
-~ ~.
— - I/ \\ St T
- - \
1 //e sT (eZST/BI\ a—sT /\esT/B,
i p ~ <’
s - N
/o \ / N
(w3,0W3)T = <oy | \esT/3 1 N e7ST e 2sT/3) (227)
\-r"/ _ -~ -_ /
- TN )r
\
Las7/%), 1 asT/3) W
‘2 / \\ / 7/
d N ~ - - - -
— — . —"/
Observe the super—diagonal terms. They are simply appropriate sub-
diagonal terms multiplied by e~sT, Indeed, it 1is only necessary to

compute the first column entries in order to completely determine
T

Wq G, W .

(W3,GW3)

Next, observe the problem statement stipulates GT/3, perhaps defined
through a substitution rule. If eST/'3 is defined as z we have, usiug
Eq. 218,
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G'lr/3 2"3(12(;'{/3) 2—3[2(;'11‘/3)

(W3,0W3)T = 261/3 ¢1/3 2=3(2267/3) 2 = eST/3
2261/ 261/3 ¢]/3 (228)

Although each term in Eq. 228 can be evaluated, using Eq. 218, only the
first column entries need be computed (i.e., the three entries of column

one are sufficient to define all nine entries).

To summarize,

T - T/3 T
(W3*CIW3]I = [W3*G1 W3) (229)

For example, recall the G?/3 transfer function from the simulation exam—

ple (Case 1IV) had the form

+ g
CT/3 = Epzz ai . 2 = 5T/3 (230)
One must tharefore compute
{aoz + al\T {z(aoz + all\T {zz(aoz + al)\T .
\ oz / U z /] 3 z / (&31)

in order to define the 3 x 3 matrix (W3*Clw3)T. To illustrate,

(_"“_Oi_ti’_l_)T . L f apta_a dp
2 2ﬂj T o z - p3 P
a (lagp + ay)z
= T (——————3—— = ag (232)
I z~-p p=0




il

a + a
(aOZ +al)T = 1 f (__OE__IJ_Z‘ dp
r

2n 3 p(z - p3)
agp + ajjz
_ (a0 31] = ay (233)
zZ - p p=0
. 1 (agp + a1)z
z)(agz + a1)}T = =—r | -—— dp = 0 {234)
[ (2)(ag D] T — P
(no poles enclused). Therefore,
- -
ag 0 aj/z
(W3*GQW3)T = a] ap 0 , z=eST (235)
C a ap
Setting ap = 42, a; = -40 verifies Eq. 216 of the previous subsection.

The other assignment made was

(T2/16)(z2 + 6z + 1) [(T2/8)¢z + 1)]/2

(T2/4)[2(z + 1)] (T2/16)(z2 + 6z + 1)
(Wp,C1Wp)T = Py (236)
100
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given

2 2
172 . It G+ 1) = o8T/2
G/ Te G - 1)2 s b4 e (237)
To verify this, write T
1 T ) 1 2-1
T/2. T - : T (2 + 1)
(Wa,61" W) = (1 271 G%/z “\16 -2
z z 1
(238)
The first term of column one is
T .
S - -
L16(z - 12| my Jp 16 (p-1)2 z-p2 P =0 p=1
12 1?2 4 (i 2 |, 82
T 16 T 16 dp  p(z-p2 16 -1)2
Poplzmp?)| | @b
T2 2
= _I‘_: LZ__’“__f’.Z_i_l.)_ . 2z = ST (239)
16 (z - 1)2
The second term of the first column is easier to compute:
1 J"_[‘E p(p+1)2 z dp _ res
23 16 (p-1D2 (z - pd) P p=1
.12 a2+ 12
. 16 dp (z - p2) p=i
2
- %__ z(z + 1) (240)
(z - D?
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The only remaining terms are the 2,2 term (which is the same as the 1,1
term) and the 1,2 term. The 1,2 term is the product of 272 with the 2,1

term. Thus, we verify Ey. 236 of this subsection and Eq. 217 of the

previous subsection.

H. SECTION SUMMARY

Important extensions to the frequency response concept feor single-
rate systems have been given. These extensions make it possihble to
investigate the spectral content of the continuous variables of multi-
rate and/or multiple-order configured systems. In addition, an impor-
tant relationship was deduced which makes it feasible to apply the
switch decsmposition/frequency response technique to the error analysis
of simulations of continuous systems and/or discretely controlled con-
tinuous systems. An illustrative example was used to demonstrate the
significant spectral differences that occur when a closed-loop system
(either an analog or digital controller) is compared with an z2ll-digital
simulation of the closed-loop system. The example also treated, as a
particular case, the problems encountered when a simulation software is
put up on two different (independent) computers, each working in a
slightly different frame time.

At this juncture, the important spectral analysis tools have been
developed, and we return (in the next section) to the study of the

multiple—-order vector concept.
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SECTION V

A PSEUDO MEASUREMERT EXERCISE

The pseudo medsurement approach achleves certaln well-defined goals,
as demonstrated in Section II. This section addresses the 1lmportant

issue of whether or not the gains required will be reasonable when plant

dynamics typical of modern alrcraft are used.

To provide a digital controller baseline feor the numerical ranges
involved, we first "emulate” an analog controller for the YF-16. Next,
the pseudo measurement approach provides alternate laops for the basic
alrframe. The numerical range of the compensation can then be meaning-
fully evaluated, though the i{ntent {s not to force the pseudo measure-
ment design to "copy" the emulated baseline coutroller., A basic frame

time of T = 0.04 sec (25 dz) is used throughout.

A. ANALOG CONTROLLER - YF-16

An analog flight controller for the longltudinal YF~-16 is given in
Fig. 40 (M = 0.6, h =.30,000 ft). This figure (and the transfer func-
tions for the aircraft model) were developed using data from Ref. 5.

A listing of transfer functions for this flight condition can be
found in Appendix D.

A digital controller configuration, using a ZOH together with com-

pensation dcfined by the Tustin transform, is shown in Fig. 4l.

For frequency response purposes, note for example

Ng T T
a = (5—-G1M)G268C (241)
where
a T T a 1]-1
N§ Ng (NGD
T T e T T e T.T e T T
Gec = I + G3(—D— GlM) + GZGQ(_IT GIM) + GZGS(T GIM) G2R
S (242)
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Mode!of

Washout Actuator ¥ = [g I
R 1.22(s +5) Bec [0 A/ dn
. ; Lecis*a) c -_
:F_ ¢ s g s+20
G G
i ! M=56
=10 a h = 30,000 ft
s+10
G3
-3{s+5) 4s 9
s+I15 s+ |
-3(s5+5) |15 dn
s+i5 s+15
Figure 40. Analog YF-16 Controller
a
GZ M G, G X =
R [.22{s+5) , 8;l;:: 20 e g"
S —_—z ZOH g A/C
T ] T s5+20
1 [
Ng -10 s_@
a° S ] R
N
an Ga
NS,
G = = , 12s(s+5) . q
T (s+1)s+15) T
Gs
-45(s+5) / GQAJ

T {s+15)2

Figure 41. Emulated YF-16
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That is, the coefficients for the frequency response components dre

defined (for a):
a
Ng
T.T
fn+ 3By = p o (6204)(2) (243)
s=jug z=1 wpT

There is a need to know the Tustin traasform of such elements as Gg,
Gg, GZ, etc. A significant computational burden ran be neatly side-
stepped at this point by noting that the bilinear w'—transformation
applied to a z-domain transfer function (which itself was derived using
the Tustin transform) yields the same form as the s—domain function.

For example, the compensation network

-1.2s5(s + 5) . =1.2w(w’ + 5)

G+ DGEFDE) =+ D * 15 (244)
-10 . -10
T = T 0 , etc. (245)

By working in w’, the computational burden imposed by poles and zeros
very close to the unit circle is avoided. Of course, Eq. 243 must be
modified to indicate the dependence on w’ rather than z:
a
N§
T.T , .
Ap + By = = GIM (G264) (") (246)
- le=ju w’'=3j(2/T) tan w,(T/2)

In addition, the transfer functions [(N%E/D)GIM]T, etc., which
define the effects of the ZOH on the open-loop plant must be tabulated.
These are also listed in Appendix D.
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B. FREQUENCY RESPONSE

Using Eqs. 243 and 246, the frequency response of the continuous
controller can be contrasted against the discrete controller results
(see Fig. 42) for the a component of the state vector. The magnitude
plot for the discrete controller is a good replica out to about 70 rad/
sec; however, the phase angle plots begin to deviate much earlier (about
7 rad/sec). These results are typical of systems designsd via the

emulation approach.

Figure 42. Bode Plot, Analog Compared with
Emulated Controller
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C. A COMMENT ON A SIMULATION ARTIFACT

Suppose the system of Fig. 41 is simulated in a particular manner.
Specifically, the compensation is Tustin transformed, the aircraft is

similated on an analeg computer, but a discrete model of the actuator is

used (Tustin transformed). The Bode plot for the a response (Fig. 43)
discloses additional '"mnotches" (compare with Fig. 42) at odd multiples
of the folding frequency (62.83 rad/sec). These additional notches are
introduced as a cousequence of the algorithm used to form the actuator

model. That is, the Tustin transform of

20 .
20 . D ¥ 20 (z + 1) (247)
s + 20 - + 20 - (2/T)
Y20 + (2/T)
40 \ 150
N
20| —~-- __.»-._,,_\. _— e X208 100
e — ~'\ Phase ‘
" Magnitude ~— |
i
o] R B —~‘~~-~-—4-- 50
-20 —1 0
- -
-~ Phase
Continous
40| -——- —1{-50
N L R It ———a - - - —————[ {00
801 - e NN TS U — | -150
Amplitude
Continous
BT L ] R et [ -1 -200
-120 e : -250
Ql 10 10 100 1000

wlrad/sec)

Figure 43. Simulation of Actuator via Tustin Transform
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introduces, because of the (2 + l) numerator, nulls at odd multiples of
n/T. This points up a general result: low-frequency checks on computa-
tional algorithms (perhaps with the aid of the "discrete" frequency

response) overlook nulls introduced in the higher folds.
D. THE PSEUDO MEASUREMENT DESIGN

Assume the avallability of only an angle of attack (a) measurement.
A set of loops around the airframe (ignoring the washout network of the
baseline configuration) is shown in Fig. 44. The Kf feedforward gain is
used, in the absence of the washout, to set the steady-state gain.

First, survey the w'=plane transfer functions associated with the time-

M Gy G
T T
Ry R, U a
- i} K¢ b—" —d z0H | 20 A/C
T T 5+20
} x
/ - -
K M w w
T d T *

Figure 44, Alternate Configuration

advanced elements of (w*Gcln)T (these are listed in Appendix D). This
listing places in clear view the w’'-plane property of generating trans-—
fer functions where the order of the numerator and denominator are
equal. For example, the transfer function for a time advance of 0.5T is

given in Eq. 248.

o (.3672x1073)[(w'+.0083) 24+(.07455) 2] (w'+47.34) (w’=61.72)(w +130.5)

(w'=1.137)[(w’ + .009)2+{,077)2](w" + 2.07)(w" + 19)

(248)
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The expected result of having the phugoid cancel 1in the a-related
transfer functions, for a zero time advance, 1s seen to persist for non- w
zero time advances as well. The greatest effect, as A varies, appears H

in the high-frequency modes,

Comparing, for example, the transfer function for A = 0.2 and 5
A = 0.8 exposes what appears to be an interesting general trend |
(Eq. 249). That is, the numerator polynomials have essentially the same
coefficieats up to the w3

nals [e'zST(N%e/DJGIM]T and [e‘gST(Nge/D)GlM]T to form an effective

term, which suggests subtracting the two sig-

transfer function with a free w’ (see Fig. 45).

(+8525x1077 )| (w’'+.008)2+(.07455)2] (w'=51.82) (w’+50,31) (w’'+6.3x107)

G,2 = D ]
_ .8525x1077w 3+,5372x10" 1w 4-.0805653-140. 1w 2-2.242w"~. 7873

' D T ;

(249a) ?

, !

G,g = (+4629x1073)[ (w'+008)2+(.07455)2] (w’+47.79) (w’+68.83) (w"~9).98) {

. D :

_ +6629x1073w5+.01141w 4-3.442w"3~140.1w"2-2. 261w . 7873 i

D (249b) |

i

|

From Fig. 45, i

!

- -1 i

ol = { eI (66 M) T+KIKT 2 1[(e-ZSTGGlM)T—(e-8STG<;1MJT]} KIRT  (250) i

The presence of 271

requires the modification of the G o, and G g tracsfer functions by

¥
!
|
|
premultiplying the pseudo differentiator term
g7l = (~w’” + 50)/(w’ + 50) since the synthesis is being performed in w’

|

|

rather than the z-domain.
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Figure 45. A Pseudo Differentiation Configuration

Since the open-loop polynomial is third order (phugoid essentially
cancels), we may attempt a first cut at a design by using the simplified

expression for A(w’), the closed-loop characteristic equation:

A(w") w3 4 19.933w’ 2 + 15.379w’ ~ 44.598

T T r - gIxT
+ Kle(l.O39)w Kle(140.048)

+ x§x§(3z.956)w' {251)

Using (w' + 3)2 + (2)2 as a goal for the closed-loop short peried then

produces, after a short root locus exercise, the gains

)T = -1.
kTkT 1.62

(252)

KEK% = 2.5
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Using these gains as a guide, the exact equation for A(w’),

a(w’) = )1 + kKTkT{ce M)T + KIkT (W 30)

-
(ow £50) 25T M)T = [@-8sT T :
fRpLC6) 5 wrrso - Ller2sToe )T — (e-8sToq M)T]} ;
(253)
|
is used to fine tune the gains. This results in i‘
T«T = -|.
KTKT 1.5
1 (254)
TwT =
KTKT 2.2
4
\ with (ignoring the phugoid)
= 1.01062083w"3 + 17.89902448w 2 + 86.32467180w’ + 165.4746084

’ A(w)

1
1.01[(w" + 3.086)2 + (2.159)2](w" + 11.537) (255) \

The design appears to be reasonably insensitive to gain variations %
(see Eqs. 256-258):

|
i
KK} = =0.7 ; }
‘ A = [ (W o+ 1.36)2 + (1.2)2)(w’ + 16.2) (256) . ! |
‘ K3KE = 1.0 ; !
1 ( ,*
. ! ;
1 KTK? = =0.; l i
| A(W) = [(w +1.003)2 + (1.45)2](w’ + 17.2) (257) i i
! N '
| KEK} = 0.7 :
|
| ;
t 3 |
K’{‘K}‘ = _'3 * 0 % '
AQe’) = [(w' + 6.16)2 + (8.74)2](w’ + 3.214) (258)
K3K} = 44

;
i
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The gains used are comparable in magnitude to those in the baseline
design (refer to Fig. 41). The (v”) characteristic equation for the
configuration of Fig. 41 is b,

e = [+ 2.156)2 + (3.503)2][(w" + .5)2 + (.303)2](w" + .00172)

x (w° + 10.7)[ (W + 14.12)2 + (14.48)2](w" + 13.55) (259)

The design which uses ¢ and A, feedback has introduced additional damp-
ing in the phugoid term, which a feedback alone cannot do. Again, no
attempt to "copy” the baseline design was made; the sole objective was
to establish feasibility and determine if reasounable gains were re-
quired. It appears that the concept 1is sound and warrants further
investigation. Further, the abllity to generate a "pseudo differentia-

tor” by differencing time delay components of a signal 1s interesting in

itself.

The Bode plot of Filg. 46 was gererated on the assugption of a sinu-
soidal input for R; (see Fig. 45).

E. SECTION SUMMARY

The pseudo measurement controller, which gives closed-loop dynamics
similar to an emulated baseline design, was shown to be feasible using
gains of reasonable magnitude. Moreover, by differencing two time
delayed signals, it was possible to generate a new transfer function
containing a free w* in the numerator, waking it a relatively simple
task to independentiy control two coefficlents in the closed~loop char-

acteristic equation.

As an aside, a simulatlon artifact introduced in the higher folds,

as a consequence of using the Tustin transform, was polnted out,
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SECTION VI

SUMMARY AND CORCLUSIONS

The ability of the digital computer to perform a variety of unusual
operations on input data lends credence to the idea of achieving closed-
loop systems with unusual attributes. This is the key point of the
present study where the loglc of the computer is used to take a scalar
continuous output signal, sample it at a relatively high rate, and then
sort it out (in a particular fashion) into a vector of “pseudo" measure-

ments.

The concept is based on using information contained ia a scalar

measurement, sampled at a high rate, to generate a lower rate measure-
ment vector. This vector is likened to pseudo states since it effec-
tively provides distinctively different information in the form of
separate sampling sequences shifted in time. Vector switch decomposi-
tion techniques, which provide a wathematical model of the pseudo
measurement vector, were reviewed and extended in 3Section II. The
pseudo measurement concept was defined and illustrated with an example.
The example demonstrated potential since:

L] Unity steady-state gain without forward loop comr
nensation was achieved.

® A five component muliiple-order sample vector was
generated from a scalar analog signal.

L] Three poles were assigned using only one availa-
ble analog measurement and therefore accomplished
pole placement with multiple samples of a single
output varieable (in distinction to single samples
of several output varlables).

The 1llustrative e.ample of Section I1 did not address the practi-
r~ality of the approach, since the magnitude of key parameters, such as
feedback gains (when plant dynamics, typical of wmodern ailrcraft, are
used), was 1gnored. This deficiency was remedied in Section V, where a

YF-16 case study example was used to compare pseudo measurement galns
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against conventional YF-16 analog controller gains., The pseudo measure-

ment gains were found to be comparable with the conventional gains,
indicating the approach does mnot require control authority more exces-

sive than the analog controller design.

In Sections III and IV the basic tools needed to assess the pseudo

measurement coucept were reviewed and/or enhanced. The concept of the

frequency response of the contiunuous variables of single-rate digltally

controlled systems was reviewed in Section III and then, in Section .,
given sufficient generality to treat multi-rate systems (including the

pseudo measurement concept).

An unanticipated dividend accrued from the analytical development of

Section 1V. As a "byproduct," an important relationship was deduced

which made it feasible to apply the switch decomposition/frequency

response technique to the error analysis of simulations of continuous

systems and/or discretely controlled continuous systems. An illustra-—

tive example demonstrated the significant spectral differences between a
closed~loop system (employing an analog or digital controller) and an

all-digital simulation of the closed-loop system. The example also

treated problems encountered when simulation software is implemented on

two different (independent) computers, each working in a slightly
differeat frame time.

Thus the tools of Section IV can be profitably applied to the

"error" analysis of simulations _—_. perhaps to predict expected differ-

ences between actual flight test and man-in-the-loop moving-base simula-

tions,

5 s o L
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AFPPENDIX A

FREQUENCY RESPONSE OF FAST-INPUT/SLOW-QUTPUT
CLOSED-~LOOP SYSTEM USING MULTI-RATE THEORY

The following solution of the closed-loop system in Fig. A-1 1is

based on the multi-rate theory presented in Ref, 1 This same system was

treated in Section IV using vector switch decomposition modeling. The

objective 1is to calculate the frequency response expression for the

output variable CT/N. The procedure for this example is typical for

closed-loop systems employing fast—input/slow-output sampling.

M2 G,
T/2 T
R E E . I_e-sT—f - ' C //__S .
172 s s+l T
Gz M
| - 1-e ST}
s+ 5

Figure A-1. Fast-Input/Slow-Output Closed-Loop System

CLOSED-LOOF MIJLTI-RATE CONFIGURATION

The T/N output equation for Fig. A-1 is given by

cT/N = (GlMZ)T/N ET/2 (A-1)

First, solve for the ET/Z signal at the input of the MZ data hold.

ET/2 = RT/2 - (GM)T/2 (GyMppT/2)T (a-2)

g




Next, premultiply Eq. A~Z by G M, and take the T transform of both sides
of the resulting equation (or sample both sides of the equation at a T

interval). The result is
(/2T = (6prT/2)T - [(e)(620)7/2)T (eppE™2)T  (a-3)
Rearranging Eq. A-3,
(6p®/2)T = {1+ [(opag) (o) /2] ") (opep81/2)" (a-)
and substituting Eq. A-4 into Eq. A-2 produces lq. A-5.

— ' -1 :
gT/2 = RU/Z - (GzﬂlT/Z{I +—{(01M2)(02M)T/2]T} (G1pRT/2)" (4-5)

Finally, substituting Eq. A-5 into Eq. A-1 gives the output equation

CT/N as a function of the input RT/Z.

1 2

g e - -

N

~ . \ ¢ T _lr T
/N (Mg )T/NRT/2 - LG1M2)T/N(GZM)T/2{I+[(Gle)(GzM)T/Z] } (61 MpRT/2)

(A-6)
Term & fy %5. A-6 introduces spectral components at
wy = b‘+ 2nn/(T/2) ’ n=20,1, 2, 3, ... (A-7)
and Term 2 iatroduces components at
w, = b+ 27k/T . k=20,1, 2, 3, «.. (A-8)
Assume I = -1n(0.81); this gives a set of convenient numbers when

Eq. A-6 is evaluated. We first evaluate the terms 1n the inverse ex-

pression




[(GyMp)(com)T/2)T (a-9)

Let z = eST/z, and introduce a phantom T/2 sampler to Eq. A-9.

o) (62m)T/2]T = [(6Mp)T/2(6om) /2T (A-10)

This mathematical operation is depicted in Fig. A-2.

R=1

—» MG, -—/—D-MZG, —//——-/T—n-
T/72 T/2

Phantom

Sampler

Figure A-2. Phantom Sampler Comncept

This step 1is conceptually correct since the T output sampler simply

rejects all the unwanted samples from the T/2 sampler. Therefore,

. [ - & T/2 . 1 - eI/2 {2 + 1
(crmg)t/ = z—‘_——ee_——r/‘i , (e)T/2 = z-:—T/-’-( 7 ) (A-11)
and
2 T
9 T 1 - -T/2)¢ 1 _ .
L e e R

(A-12)

Equatior A-12 can be solved by calculating the residues of the following

expression (see Section 1V):

L f (~e¥2)2p + D2 g (A-13)

3 p(p - eT/2 )2z - p2) P

| m—————— e . ey ..

——— e . e ————




The residues for the double poles at p = 0 and p = e~ T/2

are;
d (p + Dz b
res = -
=0 - 2 .
[p dp (p -~ e 1/2)%(2 - PZJJ 5=0 :
i
|
-T ~-T/2 {
_e"i + 2e
= =, (A-14) i‘
1
1
d (p + 1)z
res = o= a——
p.—.e—T/z dp lpz(z - PZ)] p,e-T/Z

_ =(e7T + 2e=T/2)22 + (3e=2T + 4e=3T/2),
e‘ZT(z - e_T)z

(A-15)

i
Combining Eqs. A-14 and A-15 gives the T transform required in Eq. A~12.

- {1 -~ e'T/%l?Iz + (7T + ngT/z)]
(A-16) : !

o T/ 22 | res
(1 -e / ) res‘p=o + res‘pze_,r/2

Substituting Eq. A-16 into the inverse expression in Eq. A-6 and solving
for the inverse results in

t

f

|

:1 + [(Glmz)(GzM)T/Z]Tg-l = (2 - 1) \

22 + [—Ze—T+[l-e"T/2]2]z + [Ze"ZT-3e'T+2e”T/2]

(A-17) ;

S A S ) r S e e
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For T = -In(0.81) = 0.210721031 sec, Eq. A-17 becomes

-l - 0.81)2
I+ [(61Mp)(GM)T/2 T} S ¢ = esT A-18
{ L{emz)(621)2 7] 22 - 1.61z + 0.6822 = ° (A=18)

Next, calculate the forcing fanction
[(6pa)RT/2]T = [(oqmy)T/287/2]" (a-19)

Equation A-19 can also be solved using che residue method employed on
Eq. A-12. However, a second method (Ref., 1) is to use partial fraction
expansion on the T/2 z-transform product (z = eST/Z) in Eq. A-19; take
the inverse of each term back iunto the countinuous time domain; and then
resample back to the z-domain for a T sampling interval (z = eST). In
practice, the intermediate step of computiug the generating time func-
tion is merely a convenieunt coanceptual step and can be skipped. Then,

for r = 1 sin bt,

- o~T/2 T
o) T/2Rt/2]T = (Lo T/gl (z_aig BI/2) 3
(z - e ] [(z - cos bT/2)¢4 + (sin bT/2) ]
(A-20)
Expanding in partial fractions, Eq. A-20 becomes
sL} ~ e_T/ZJ (z s’ ©bT/2) IT -
I(z - e T/2) [(z - cos bT/2)2 + (sin bT/Z)zf
Kjz sin bT/2 Kpz(z ~ cos bT/2) K3z

+ +
[(z - cos bT/2)2+(sin bT/2)2] [(z - cos bT/2)2+(sin bT/2)2]  (z-e~1/2) |

’

(A-21)

!
x
H
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Solving for K;, Ky, and Ky in Eq. A-21 gives Eq. A~22 (z = eST/ 2y,

((1=-eT/2) (z sin bT/2) T
l(z - e‘T/z) [(z - cos bT/2)2 + (sin bT/2)2]

! (- eT/2)

1[[e'T/2 - cos bT/Z)2 + (sin bT/2)2]

(cos bT/2 = e T/2)z sin bT/2
[(z2 =~ cos bT/2)2 + (sin bT/2)2]

- (sin bT/2)z(z - cos bT/2) + (sin bT/2)z | T (a-22)
[(z = cos bT/2)2 + (sin bT/2)2] [z - & 1/2) .

Since we are concerned with steady-state frequency response, only the
sine and cosine terms need to be considered. Therefore, resampling at a

T frame time results in (z = eST)

(1-e~T/2) (z sin bT/2) T Kjz sin bT + Kpz(z - cos bT)
(z—e‘T/Z) [(z - cos bT/2) 2+(sin bT/2)2] [(z = cos bT)2 + (sin bT)z]
(4-23)
where
{ . o xmin T /230, ~T /23
K| = (CUS Dij¢c — e */=|{]l = e */«] (A=24)
(e_T/2 - cos bT/2)2 + (sin bT/2)?%
and /2
Ky = (1 - e T/2)(sin b1/2) (A-25)

(e=T/2 - cas bT/2)2 + (sin bT/2)?

It 1is now apparent that the [(Gle)RT/Z]r term represents a sinusoidal
forcing function for Eq. A-6. In Ref. 1, Appendix E, it is shown that

Eq. A-23 reduces to a complex multiplication factor in the frequency

response expresslon. That 1s, the complete frequency response expres—
sion for Eq. A-6 is given by




. . 2.5T/2 1| 286sT
M GyMy . 7=e 1 e’
Apt By = 1l/Z| T (GZM)r/Z 5I+[(C1M2)(G2M’T/7] } (K] +3K,]
‘_!;:Ju}.n szjmk z=1 w (T/2) z-l.&ka
(A-26)
where
2nn .
wp, = b+ 57% , n=0, 1, 2, «vs
(A-27)
W = b+-2-f]“—k s k=0, 1, 2, «u.

The complex multiplication factor [Kl + jKZ] is defined in Eqs. A-24 and
A-25, The remainiug Irequency response factors were written directly
from inspection of the cl/N output equation (Eq. A-6) using the fre-

quency response identities presented in Section IV, Subsection D.

Notice that K; and K, are functions of thLe input frequency b and not
we = b+ 2nk/T. In addition, both Kl and K, are periodic functions at
b = n/{1/2), the input sampling frequency. As discussed in Section IV,
the result of this singular dependence on the input excitation frequency
b and the periodic nature of the K; and K, functions is multiple Bode

plots.

Substituting the previously calculated terms into Eq. A-26 results
in Eq. A-28:

. TN { 22.8T/2
A FiBL = l-e ‘ _ (1-e7st/Z] {1- ‘l/ll z+l | ©
-n no- + Ts(s+l Tz
L P O CC I PRIV VS
i
1,4,.8T
_ 2 2%e
x 2. 08D [y +3K2] (4-28)
z2 = 1.6lz + 0.6822
z=lgwy T

This equation gives exactly the sawme results as Eqs. 159 or 175 in Sec-

tion 1IV.

A




T/2,T
FREQUENCY RESPONSE TERM [GR |

It is possible to derive a general frequency response 1identity
factor for the [(GIMZ)RT/ZJT term in Eq. A-6. Consider the more general
expression in Eq. A-29 with r = 1 sin bt,.

[RT/MT = [cT/MRT/M)T (4-29)
The T/M transform for the sinusoldal input 1s expressed as
RT/M - z sin bT/M , z = oST/M (A-30)

z2 - (cos bT/M)z7+ 1

Substituting Eq. A-30 into Eq. A-29 and expanding the T/M trancsform

product into partial fractions gives

QT /M z sin bT/M T Kiz sin bT/M + Kpz(z - cos bT/M) T
22 - (cos bBT/M)z + 1 22 - (cos bI/M)z + 1 o

Terms due to 1T
+[ ] (A-31)

modes of cT/M

Since we are concerned with the steady-state frequency response, the
partial fraction expansion terms due to the modes of GT/M can be

dropped. Therefore, multiply both sides of Eq. A-31 by z2+(cos bT/M)z+l

and evaluate at z = cos bT/M + j sin bI/M. The result is




[6T/M 2 sin bT/M Zsléb(T/M)]T = [Kyz sin bT/M + Kyz(z~cos bT/M))

(A~32)
and

| 61/Mz sin bT/M z=ub<r/u)]T = Ky sin BI/M + Kpj sin b2/M)T  (a~33)

Then

a sT/M
cT/M lz ¢ = = K 5K -
(Z)‘z=ub(T/M) AR (A=34)

Substituting Eq. A~34 into Eq. A~26 produces

s.sT
2,8T/2 )=
. GiM2 Gy Mp 2| %7¢ T)
Ayt iy = -2 (o) T/ RENICRPNCORE
s=juy s=joy, f2=14w, (1/2) z= 14w, T
/2 zgesT/Z
x (G1My)

zmlei {T/2) Sa_ren
i it S Ra—30)

The following general frequency response identity can then be applied to
Eq. A-6 to directly write Egq. A-35.

28esT/M

/ML o jeTMgT/MT = gT/M
[GRI/M] [cT/MRIM]T => ¢TM | ber/n)

(A~36)

A complete set of frequency response identities is listed in Section IV,
Subsection D.

lT
z=14b(T/M)

e mmr e o e o= g




APPENDIX B

~ T T
COMPUTATION OF (W3*M2W2) AND (Wz*M3w3) !

As noted in Section IV, the computation of terms such as (W3*M2W2)T

!

and (WZ*M3W3)T is straightforward. First, evaluate (W3*M2w2)T using %
1

|

|

Eq. 210: J
T _ / \'F H
. L e |
T _ -sT/2 | -sT/2 -
(“'B*Mzwz) = eST/:‘: (1—es ) (1 : e—sT/Z] - 1--e eST/3 e—-b'l/()
es2T/3 s2T/3 _sT/6
e e 1
(B-1) '
i
_ ‘ - ‘
_l_ B e—STQST/z. e—ST(eaT/z - 1) I
s s s ‘
- A B 1 0 i
esT/3 e-sTﬁsST/6 —sT eSST/6 esT/j B ;
- e — - - = 1 0 !
s S > S 1
i
e e 0 1 ;
ESZT/a ) esT/6 _eST/6 i e—s’lesZT/B ‘1
|_ s s s s (B-2) ‘
!
§
Next, evaluate (WZ*M3W3)T: r
T |
1 ( -sT/3) '
| T _ 1l -e v —sT/3 -s2T/3 ‘ o
(WZ*M3W3) = eST,IZ . ll : e e | ‘
| | 3 21/3 | 1
. —T/3 1 e—sT/ &5 T/3 ‘
= - € - (B~3)
S sT/2 sT/6 -sT/6
e e e




Clearing through and writing Eq. B-3 in terms of the advanced z-transform

tion IV.

for 1/s:
1 e_STeSZT/3 ‘ e—sTQsZT/3 e-sTesT/3 e—sTesT/B e«sT
—S— - 5 : S B 3 s - s
T _ N e
(W), MqW3) 1
sT/2  sT/6 | sT/6  -sT sST/6 sT s5T/6  -sT sT/2
e n e e - e_ e =] e - e e
L s S l S S 5 S
1 0 0
= (B-34)
0
| 0 1

Equations B-2 and B~4 justify the assignuents made in Eq. 211 of Sec-
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#PPENDIX C

NUMERICAL DETAILS FOR AN ILLUSTRATIVE EXAMPLE

Equation 223 of Section IV stated

o3 - _l_f /3 76 zsz 76 2776 7, 9°
- 2713 - -7 - - )
R R R AT E AR Y F A TR
” _ .
- zz(z“ + e 51/6) /3
- - - .2 - =2 = oST
(z - e 2T/B)(z - e T/B)\z + e T/3z + e T/3) > z e
(c-1)
There are four residues required:
3 {C-2)
res = res 143 = Pz
pre P S V& NP S VE X
res = res /6 - e_T'Izz (C“B)
2 -7 . -
p=e (e—T/o _ 2-1/3)(3e-'1/3)(z _ e—T/J)
res, = res - _
3 pe=(e™ 812y 1 5O
(-p‘Tfi T4l -'r/b)3
2 2 * z

( -T/6 T/6

\;e . j%;;U-T/6 _ e_T/})(:g; + i%; R VI e_T/6)(j/§ e-T/G)[Z _(

2

e
2

U

A gyt P e =




T/3

/3 i 1 -2 28 (e™41/3

Switch decomposition can be used as an alternative (refer to Fig. C-1).

e e L
T T3\"3x s 42 "2 (W2,K)

1 T RT
_ sT/3 | 1 { ' sT/2 ?
= W3 e P 1 : e {(C-=5) ‘4
2T/3 s T
oS / (eQT/zR) |
I
z e_T z2 + e—BT/2 -4
:
so=2T/3 e—ST/B -, o-21/3 2 4 o-13T/16 :
z - e % '
- k3 - - - — / :
P 4T/ e T/3 . zz(e 41/3 | -5T/6 i
3 2T 3 -2T. . -T. ‘
Z ~ € -T/2 (2 — e )iz - e ) i
ze i
z - e T (C-6) }
|

|
R=— 1/3
stl R c i
| i
————/__.@_/—*~ = WZ" Wz A-—@..- )
/2 - T/3 T T

Figure C-1. Switch Decomposition of T/2, T/3 Lxample

[

Next, define z = eST/3 and clear through by w3: |

26 + e—3T/2 z3

26(e~2T/3) + e-lBT/16 Z3
e~5T/3

(c-7)
3T

.+.
)(z

(23 _ e-ZT

C-2

— N . Iﬁ'iﬂ II I\.; <'I _‘



Expand Eq. C-6 and cancel the pole/zero pair 2?2 + e_ZT/3 + e~AT/3;

6 e-2T/325 ~-4T/3 N e—5T/6)z4 + Q—BT/ZZB + e——13‘17/1622

CT/3 - z + + (e
- (z - e_ZT/Z) (z* + e 213, 4 e_4T/3) (z - e—T/3)(z2 e 3, 4 e —ZT/B)
(c-8) |
|
_ z2(22 + e—5T/6.) o) ;
(z - 23y, _ &3y (G2 ¢ T3 «2T73, :




APPERDIX D

LISTING OF TRANSFER FUNCTIONS

The s- and w’ transfer functions are listed for a T = 0.04 seconds
(25 Hz). The actuator model, 20/(s + 20), is included. The w’ transfer
functions presume a ZOH and were calculated using the DISCRET computer

program presented in Volume II.

Also listed are the advanced w’'—transfer functions for a needed for
the analyses of Section V. The denominator, which is the same regardless
of the amount of time advance, is listed only once. The numerators are

listed for advances from 0.0 to 0.9.

For case of presentation, the variable s has been used in all of the
tables. The particular data heading makes clear whether s or w' is in-

tended.
s— AND w“-PLANE TRANSFER FUNCTIONS
o/be, s~Plane

AK= ( ANK/ADK) = —1.4k49

ATF(S) NUMERATOR

I ANPOTY(T) AZFRO(T)

1 ( =1.449 HYs*x 3 ( =.B003E~02) + J( —.7455E-~01)
2 ( =147.¢ HYo*x 2 ( =.8003F-02) + J{ .7455E-01)
3 ( =2.3m0 Yg** j { —101.9 Y + J( 0. )
N {( —-.8295 ) ANK=  —1.449

ATF(S) DENOMINATOR

T ADPOTY(T) APOLE(T)

1 ( 1.000 )oxx g ( 1.137 Y+ J( o. )
2 ( 20.95 s#x ( =.93455-02) + J(  .7705E~01)
5 C 16 s 3 (0 =,93h58-02) + J( -, 709E~01)
L ( =4G.00 Ygex o { -2.0T1 Y+ J( 0, )
5 ( =.7820 )o¥x g ( -=20.00 Y + J( 0. )
G ( =-.2837 ) ADK= 1.0C0

D-1

Ao

T T S AT




a/Be, W'-Plane

1

RK= ( RNK/RDK )= —.2926F—03 |

RTF(S) NUMERATOR

1 RNPOLY(I) RZERO(I) \
1 ( =.292(R~03)s%* 5 ( —.8003E-02) + J(  .7M55E~01)
2 ( J49BCE-O1)s** & ( —=,8003E-02) + J( =« TU55E-01) ' l
3 ( 1.0k Ys** 3 (50,00 Yy + J( J1707E-10) !
4 ( =140.0 ys¥* 2 (5L, 67 ) + J( o, )
5 ( —2.936 s 1 175.1 ) + J( o. ) ‘
G ( —-.7873 )
1
|
RTF(S) DENOMINATOR
T ‘ RUPOLY (1) - RPOLE(T)
1 ( 1.000 Ys¥e 5 (0 1.137 )+ J( o, )
= £ 19495 Ys¥* b (=, 93h5E-02) + J(  LTTO5E-01)
3 ( 15.7k )s¥¢ 3 —.93W5E-02) + J( —.T7705L-01)
I ( =4k, 29 ys¥ 2 (2,010 ) +J( o. ) s
5 (=30 swq (-19.00 )+ J( o. ) ‘
¢ ( —.2093 )
9/8,, s-Plane ‘
BK= ( BNK/BDK )= —147.6

BIT(8) NUMERATOR

I BNPOLY(I) BZERO(T)

1 { =147.6 Ya*e 3 (O, Y+ J( o. )
2 ( =79.%9 Yexe 2 (0 -.88168-02) + J{ O. )
5 g - B8L. Yewx 1 ( =.5202 Y+ J( 0. )
A { . 3 BK=  —147.6

BIT{S) DENOMINATOR

T BDPOLY(T) BPOLE(T)

1 ( 1.000 Ysx 5 (1,137 ) +J( o, )
2 ( 20095 Yox* b (1 —,9345E-02) + J( « 770501
35 ( 16.7 )S¥* 3 ( —.9345E-02) + J( —.T7705E-01)
i { ~hé,66 Ysx* 2 ( —2.071 Y+ J( o, )
5 { =820 Ys** 1 —20,00 Y + J( o. )
G ( —-.2837 ) BDKs= 1. C00

=2

ﬁx;a":?: A e s

. - B




q/ﬁe, w'-Plane

S5K=
1 SNPOLY{ 1)
1 ( CTONCE—02) X%
o (  2.428 ) g**
3 { -138.8 ) o
h (=755 Y gwr
5 { =053 ) ¥
3 ( 0. )
1 SDEOLY (1)
1 ( 1.000 ) 3%*
2 {0 19,99 ) g¥*
3 { 15.7h P i
h ( —kh.?79 ) s**
5 ( —-.7%3%0 Y ox*
¢ -3 )
An/ae’ a"Plan
CK=
1 CNPOLY (1)
1 [ —.5315 ik
2 { —=.531h ) gR¥
3 ( —2h.95 ) gk
I ( JLSETE-O1 ) g%*
5 ( o.
1 CDPOLY{I)
1 {  1.000 ) g
( 20.9 i
3 ( 16.71 ) o*¥
4 ( —=h6.66 ) gF*
D) ( —.7820 Y g**
£ ( -.2837 )

SHNK/SDK )= L 5L 6E-02
STI(S) NUMERATOR

SZERO(T)
5 ( —.88168-02) + J( O. )
h ( —=.5292 Y + J( 0. )
3 (50,00 Y+ J( =aAT17E11)
o ( =37.2 Y + J( 0. )
1 ( 0. Y + J( 0. )
STF(S) DENOMINATOR

SPOLE(T)
5 (0 14137 y + J( 0. )
b ( —.9%3s5u-00) + J( .TT05E-01)
3 ( —.9345E-02) + J( ~—.T705E-01)
> ( =2.070 Y + J( O )
1 ( -19.00 Y + 00 0O )

{ CNK/CDK )= -

CTF( 8) NUMERATOR

. )
.183118-02)
-.5009 %

- DN

CNK=

cTr(8) DENOMINATOR

5 (0 137 )
b ( —.93L5E-02)
5 ( —.93458-02)
2 ( =2.071 )
1 ( =P0.00 )

CDK=

D-3

5315
CZERO{ 1)

+ J( 0. )
+ J( 0. )
+ 30 6,833 )
CPOLE(T)

+J( 0. )
+ J{ .7 TO5E-01)
+ J( ~.7705E-01)
+J( 0.

+ J( 0. )

1.000

=

——— . e




An/be, Ww'-Flane

Tk= ( TNK/TDK )= +1003E-01 ‘
TTF(S) NUMERATOR ‘i
1 TNPOLY(T) TZERO( T) !
1 ( .1003E-01)s** 5 (  ,183%0E-02) + J( O. ) !
2 ( =902 )s¥* b (-5 Yy + 30 6.847 ) '
3 ( —.09LhkE~01)s%¥* 3 ( --.5721 Y + J( —6.8u7 )
i ( —23.63 ys** 2 (50,00 Y + J( —.2797E-11) ,
5 ( J4333E-01)s%* 1 ( O, Yy + J( o, ) !
6 ( o. ) '
g
TTF(S) DENOMINATOR
1 TDRPOLY(I) TPOLE(T)
1 {  1.000 Ysxx 5 1.137 Yy + J( o, )
2 ( 19.95 Yog*x b =.9345E-02) + J{  .TTO5E-01)
3 ( 15.74 Yox¥¥ 3 ( =.9345E-02) + J{ —.T7705E~01)
W =kbpg s#x 2 ( —p.070 )+ J( O )
5 { —=.7830 Yo*e 1 —-19.00 } + 3( OC. )
6 ( —,2693 )

o TIME ADVANCED TRANSFER FUNCTIONS (w')

DENOMINATOR ‘

I DPPOLY(T) POLE(T) |
1 (  1.000 Ys¥x 5 (0 1.137 ) + J( O, : ‘
> ( 19.95  )g** b ( —,9345E-02) + J(  .T705E-01) . i
300 (0 15.7h )s** 3 (= 93U5E-02) + J( —.T70bE01) ' i
i ( =kb.29 Yo¥* 2 ( —2,070 Y + J( 0. )
5 ( —.7430  Ys** 1 ( -19.00 ) + J( O. )
6 ( -.2693 )

A = 0 (0.00 seconds)

NUMERATOR

| NPOLY(I) ZERO(T)
1 ( =.2020F-03)5*% 5 ( —.80035-02) + J(  .T455E-01)
2 ( Jug86B~01)s** 4 ( —,8003E-02) + J( —.TU55E-01)
3 {  1.040 Ys** 3 (50,00 Y +J( J170TE~10)
b ( —140.0 Yox* 2 ( —5h.67 Yy +J( C. )
5 ( —2.236 Yok v (1750 Y + J( o. )
6 ( =-.1873 )




i wWwn = - N AN = O\ EWW Y = H

VT FEAN N 2

N N o -~

e e T NN

A
NPOLY(T)

— T4 TUE~03) g%
5251 E-01 ) S**
L4797 ) Sx*

—140.0 Y gue

—2,939 ) Sw*

-. 7873 )

A
NPOLY{T)
LEE25E=07) 3¥*
L537PE=01) S¥*

—.50568-01) 5%*

—z. P2 Yo%

-.7873 )

A
NPOLY(1)
. 1 HOGE~03) S**
L5228F01) S¥#
—. 6408 Yg#x
A A N\ caan
I b A ] J
-0, 205 ) g
- 7873
Ja
POLY(1)
« P6EOR03) GHk
LBH9E-01 ) S
~1.201 fRi

—140.1 Yg# o

-2,249 Y gu

- 7873 )

= N2\ A I = D WO, 1l

]

2
4
3
o
1

.1 (.00 seconds)
NUMERATOR
ZERO(1)
( —-.8003E-02) + J{  .7455E-01)
( —.8003k-02) + J( —.T455E-01)
( 50.48 )+ J( o )
( =52.18 Yy + J( o. )
.2 (.008 seconds)
MUMERATOR
ZERO(T)
( —.8003E-02) + J( —.T455E-01)
( =.8003E-02) + J(  .7455E-01)
(  51.82 Y+ J( o.
( —-50-31 ) + J( O' )
( —6301E+06) + J( O. )
.3 (.012 seconds)
NUMERATOR
ZERO( I)
( —.8003E-02) + J(  .TU55E-01)
( —.8003E-02) + J{ —.T455E-01)
( -48.93 ) + J( o. )
( sh,op Y+ I( o. )
( ~376.9 ) +J( 0. )
L4 (.016 seconds)
ZERO( T)
( —.80035-02) + J(  .T455E~01)
( —e8003E-02) + J( —.T4558~01)
( —b7.95 ) + J( 0. )
( 5T7.00 Y+ J( 0. )
{ —19z.2 Yy +J( o. )
D-5

S kees e o -

RPEE CUTSY S YT L




ONT i) =

NN =

AW W = = o\

VUl AW~

T N N T AN T

I~ N

WPOLY(1)
30T72E-03) Sx*
LU266E-01 ) S*x

—140.1 ) G
—0.259 Y Sk

—. 7873 )
A
NPOLY(T)
U3B3E-03) S#*
. 3LUBE-01) s%*
—2,322 YS**
—140.1 ) gxx
—2.25% PEELES
-.7873 )
A
NPOLY(T)

S T22E-03) S*%

. 240TE-01) %%
-2.882 Yo%
—140.1 ) g
—-2.258 ) S*¥
- 7873 )

NPOLY(T)
«HE29E-03) sH*
111501 ) g

=5 4o Y Sw#
—-140.1 ) g
—2.261 Y gw
— 7875 )

]

= oW U

— D\ G ] = W

1l

.5 (.02 seconds)

NUMERATOR

ZERO(1)

( —.8003E-02) + J(  .TH55E-01)
( =.8003H~02) + J( ~—.T455E-01)
( =h7.3% ) +J3( o )
( 61.72 Y+ J( 0. )
( —-130.5 Y + 3( 0, )
.6 (.02 seconds)
NUMERATOR
ZERO(I)
( —-.8003E-02) + J(  .T455E-01)
( —.8003E-02) + J{ =—.T455E-01)
( =h7.170 ) +3( o. )
(  (B.09 Y+ J( 0, )
( —99.6k4 Y + J( 0. )
.7 (.028 seconds)
NUMERATOR
ZERO(I)
( —-.8003E-02) + J(  .T455F-01)
{ —=.800%5-02) 4 J( =.7455801)
( ~k1.23 Y+ J( o. )
(  77.1 Y+ J( o. )
( =81.13 Yy + J( o. )

.8 (,032 seconds
NUMERATOR

2E
( —.8003E-02)
( —.8003E-02)
( _'ur(n 79 )
( —-68,83 )
( 91.98 )

)

+4 ottt

0(1)

J( JTUS5E-01)
J( =.7L558-01)
J( 0.

J( o, )
J( 0. )

s ¢




|
A = .9 (.036 seconds) ' !1
f
NUMFERATOR “
1 NPOLY(T) ZERO{ 1) 1
7 ( JhObTE-03)s** 5 ( =.8003E-02) + J( L 755E-01)
2 ( =.3M81m-02)s** L —.80038-02) + J( —.74558-01) 1
| 3 ( —4,003 JS*e 3 (1 —Ls.87 )+ J( o. ) '
b ( —=1h0.1 Js¥% o —~(0,19 Y+ J( 0. ) |
5 ( —2.20kL )5 1 (17,7 Y+ 30 0. ) ;
6 ( —.7873 ) iw
|
| |
|
|
!
1
;i
e tl
i |
%
| .
C
| C
| .%
| | 1
., |
| ‘ D-7
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